CT-derived Epicardial Adipose Tissue Inflammation Predicts Outcome in Patients Undergoing Transcatheter Aortic Valve Replacement.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Thoracic Imaging Pub Date : 2024-07-01 Epub Date: 2024-02-22 DOI:10.1097/RTI.0000000000000776
Babak Salam, Baravan Al-Kassou, Leonie Weinhold, Alois M Sprinkart, Sebastian Nowak, Maike Theis, Matthias Schmid, Muntadher Al Zaidi, Marcel Weber, Claus C Pieper, Daniel Kuetting, Jasmin Shamekhi, Georg Nickenig, Ulrike Attenberger, Sebastian Zimmer, Julian A Luetkens
{"title":"CT-derived Epicardial Adipose Tissue Inflammation Predicts Outcome in Patients Undergoing Transcatheter Aortic Valve Replacement.","authors":"Babak Salam, Baravan Al-Kassou, Leonie Weinhold, Alois M Sprinkart, Sebastian Nowak, Maike Theis, Matthias Schmid, Muntadher Al Zaidi, Marcel Weber, Claus C Pieper, Daniel Kuetting, Jasmin Shamekhi, Georg Nickenig, Ulrike Attenberger, Sebastian Zimmer, Julian A Luetkens","doi":"10.1097/RTI.0000000000000776","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Inflammatory changes in epicardial (EAT) and pericardial adipose tissue (PAT) are associated with increased overall cardiovascular risk. Using routine, preinterventional cardiac CT data, we examined the predictive value of quantity and quality of EAT and PAT for outcome after transcatheter aortic valve replacement (TAVR).</p><p><strong>Materials and methods: </strong>Cardiac CT data of 1197 patients who underwent TAVR at the in-house heart center between 2011 and 2020 were retrospectively analyzed. The amount and density of EAT and PAT were quantified from single-slice CT images at the level of the aortic valve. Using established risk scores and known independent risk factors, a clinical benchmark model (BMI, Chronic kidney disease stage, EuroSCORE 2, STS Prom, year of intervention) for outcome prediction (2-year mortality) after TAVR was established. Subsequently, we tested whether the additional inclusion of area and density values of EAT and PAT in the clinical benchmark model improved prediction. For this purpose, the cohort was divided into a training (n=798) and a test cohort (n=399).</p><p><strong>Results: </strong>Within the 2-year follow-up, 264 patients died. In the training cohort, particularly the addition of EAT density to the clinical benchmark model showed a significant association with outcome (hazard ratio 1.04, 95% CI: 1.01-1.07; P =0.013). In the test cohort, the outcome prediction of the clinical benchmark model was also significantly improved with the inclusion of EAT density (c-statistic: 0.589 vs. 0.628; P =0.026).</p><p><strong>Conclusions: </strong>EAT density as a surrogate marker of EAT inflammation was associated with 2-year mortality after TAVR and may improve outcome prediction independent of established risk parameters.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":"224-231"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000776","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Inflammatory changes in epicardial (EAT) and pericardial adipose tissue (PAT) are associated with increased overall cardiovascular risk. Using routine, preinterventional cardiac CT data, we examined the predictive value of quantity and quality of EAT and PAT for outcome after transcatheter aortic valve replacement (TAVR).

Materials and methods: Cardiac CT data of 1197 patients who underwent TAVR at the in-house heart center between 2011 and 2020 were retrospectively analyzed. The amount and density of EAT and PAT were quantified from single-slice CT images at the level of the aortic valve. Using established risk scores and known independent risk factors, a clinical benchmark model (BMI, Chronic kidney disease stage, EuroSCORE 2, STS Prom, year of intervention) for outcome prediction (2-year mortality) after TAVR was established. Subsequently, we tested whether the additional inclusion of area and density values of EAT and PAT in the clinical benchmark model improved prediction. For this purpose, the cohort was divided into a training (n=798) and a test cohort (n=399).

Results: Within the 2-year follow-up, 264 patients died. In the training cohort, particularly the addition of EAT density to the clinical benchmark model showed a significant association with outcome (hazard ratio 1.04, 95% CI: 1.01-1.07; P =0.013). In the test cohort, the outcome prediction of the clinical benchmark model was also significantly improved with the inclusion of EAT density (c-statistic: 0.589 vs. 0.628; P =0.026).

Conclusions: EAT density as a surrogate marker of EAT inflammation was associated with 2-year mortality after TAVR and may improve outcome prediction independent of established risk parameters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CT 导出的心外膜脂肪组织炎症可预测经导管主动脉瓣置换术患者的预后。
目的:心外膜(EAT)和心包脂肪组织(PAT)的炎性变化与总体心血管风险的增加有关。我们利用常规、介入前心脏 CT 数据,研究了 EAT 和 PAT 的数量和质量对经导管主动脉瓣置换术(TAVR)后预后的预测价值:回顾性分析了 2011 年至 2020 年期间在内部心脏中心接受 TAVR 的 1197 例患者的心脏 CT 数据。从主动脉瓣水平的单片 CT 图像中量化了 EAT 和 PAT 的数量和密度。利用已建立的风险评分和已知的独立风险因素,我们建立了一个临床基准模型(体重指数、慢性肾脏病分期、EuroSCORE 2、STS Prom、介入年份),用于预测 TAVR 后的结果(2 年死亡率)。随后,我们测试了在临床基准模型中额外加入 EAT 和 PAT 的面积和密度值是否能提高预测效果。为此,我们将队列分为训练队列(798 人)和测试队列(399 人):结果:在两年的随访中,264 名患者死亡。在训练队列中,尤其是在临床基准模型中增加 EAT 密度与预后有显著关联(危险比 1.04,95% CI:1.01-1.07;P =0.013)。在测试队列中,加入 EAT 密度后,临床基准模型的预后预测也得到了显著改善(c 统计量:0.589 vs. 0.628;P =0.026):结论:EAT密度作为EAT炎症的替代标志物与TAVR术后2年死亡率相关,可独立于既有风险参数改善预后预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thoracic Imaging
Journal of Thoracic Imaging 医学-核医学
CiteScore
7.10
自引率
9.10%
发文量
87
审稿时长
6-12 weeks
期刊介绍: Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology. Official Journal of the Society of Thoracic Radiology: Japanese Society of Thoracic Radiology Korean Society of Thoracic Radiology European Society of Thoracic Imaging.
期刊最新文献
Pulmonary Aspiration Syndromes: An Imaging-based Review. Clinical Validation of a Deep Learning Algorithm for Automated Coronary Artery Disease Detection and Classification Using a Heterogeneous Multivendor Coronary Computed Tomography Angiography Data Set. Clinical and Imaging Features of Pulmonary Nodular Lymphoid Hyperplasia. Editors' Recognition for Reviewing in 2024. In Memorium-Santiago E. Rossi, MD (1971-2024).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1