Naewoo Shin, Karen M Rodrigue, May Yuan, Kristen M Kennedy
{"title":"Geospatial environmental complexity, spatial brain volume, and spatial behavior across the Alzheimer's disease spectrum.","authors":"Naewoo Shin, Karen M Rodrigue, May Yuan, Kristen M Kennedy","doi":"10.1002/dad2.12551","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Understanding impact of environmental properties on Alzheimer's disease (AD) is paramount. Spatial complexity of one's routinely navigated environment is an important but understudied factor.</p><p><strong>Methods: </strong>A total of 660 older adults from National Alzheimer's Coordinating Center (NACC) dataset were geolocated and environmental complexity index derived from geospatial network landmarks and points-of-interest. Latent models tested mediation of spatial navigation-relevant brain volumes and diagnosis (cognitively-healthy, mild cognitive impairment [MCI], AD) on effect of environmental complexity on spatial behavior.</p><p><strong>Results: </strong>Greater environmental complexity was selectively associated with larger allocentric (but not egocentric) navigation-related brain volumes, lesser diagnosis of MCI and AD, and better spatial behavioral performance, through indirect hierarchical mediation.</p><p><strong>Discussion: </strong>Findings support hypothesis that spatially complex environments positively impact navigation neural circuitry and spatial behavior function. Given the vulnerability of these very circuits to AD pathology, residing in spatially complex environments may be one factor to help stave off the brain atrophy that accompanies spatial navigation deficits across the AD spectrum.</p>","PeriodicalId":53226,"journal":{"name":"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring","volume":"16 1","pages":"e12551"},"PeriodicalIF":4.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883241/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/dad2.12551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Understanding impact of environmental properties on Alzheimer's disease (AD) is paramount. Spatial complexity of one's routinely navigated environment is an important but understudied factor.
Methods: A total of 660 older adults from National Alzheimer's Coordinating Center (NACC) dataset were geolocated and environmental complexity index derived from geospatial network landmarks and points-of-interest. Latent models tested mediation of spatial navigation-relevant brain volumes and diagnosis (cognitively-healthy, mild cognitive impairment [MCI], AD) on effect of environmental complexity on spatial behavior.
Results: Greater environmental complexity was selectively associated with larger allocentric (but not egocentric) navigation-related brain volumes, lesser diagnosis of MCI and AD, and better spatial behavioral performance, through indirect hierarchical mediation.
Discussion: Findings support hypothesis that spatially complex environments positively impact navigation neural circuitry and spatial behavior function. Given the vulnerability of these very circuits to AD pathology, residing in spatially complex environments may be one factor to help stave off the brain atrophy that accompanies spatial navigation deficits across the AD spectrum.
期刊介绍:
Alzheimer''s & Dementia: Diagnosis, Assessment & Disease Monitoring (DADM) is an open access, peer-reviewed, journal from the Alzheimer''s Association® that will publish new research that reports the discovery, development and validation of instruments, technologies, algorithms, and innovative processes. Papers will cover a range of topics interested in the early and accurate detection of individuals with memory complaints and/or among asymptomatic individuals at elevated risk for various forms of memory disorders. The expectation for published papers will be to translate fundamental knowledge about the neurobiology of the disease into practical reports that describe both the conceptual and methodological aspects of the submitted scientific inquiry. Published topics will explore the development of biomarkers, surrogate markers, and conceptual/methodological challenges. Publication priority will be given to papers that 1) describe putative surrogate markers that accurately track disease progression, 2) biomarkers that fulfill international regulatory requirements, 3) reports from large, well-characterized population-based cohorts that comprise the heterogeneity and diversity of asymptomatic individuals and 4) algorithmic development that considers multi-marker arrays (e.g., integrated-omics, genetics, biofluids, imaging, etc.) and advanced computational analytics and technologies.