CT quantification of COVID-19 pneumonia extent to predict individualized outcome.

IF 1.5 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL Bratislava Medical Journal-Bratislavske Lekarske Listy Pub Date : 2024-01-01 DOI:10.4149/BLL_2024_25
Zuzana Berecova, Dominik Juskanic, Martin Hazlinger, Marek Uhnak, Pavol Janega, Maros Rudnay, Robert Hatala
{"title":"CT quantification of COVID-19 pneumonia extent to predict individualized outcome.","authors":"Zuzana Berecova, Dominik Juskanic, Martin Hazlinger, Marek Uhnak, Pavol Janega, Maros Rudnay, Robert Hatala","doi":"10.4149/BLL_2024_25","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong> This study aimed to predict individual COVID-19 patient prognosis at hospital admission using artificial intelligence (AI)-based quantification of computed tomography (CT) pulmonary involvement.</p><p><strong>Background: </strong>Assessing patient prognosis in COVID-19 pneumonia is crucial for patient management and hospital and ICU organization.</p><p><strong>Methods: </strong>We retrospectively analyzed 559 patients with PCR-verified COVID-19 pneumonia referred to the hospital for a severe disease course. We correlated the CT extent of pulmonary involvement with patient outcome. We also attempted to define cut-off values of pulmonary involvement for predicting different outcomes.</p><p><strong>Results: </strong> CT-based disease extent quantification is an independent predictor of patient morbidity and mortality, with the prognosis being impacted also by age and cardiovascular comorbidities. With the use of explored cut-off values, we divided patients into three groups based on their extent of disease: (1) less than 28 % (sensitivity 65.4 %; specificity 89.1 %), (2) ranging from 28 % (31 %) to 47 % (sensitivity 87.1 %; specificity 62.7 %), and (3) above 47 % (sensitivity 87.1 %; specificity, 62.7 %), representing low risk, risk for oxygen therapy and invasive pulmonary ventilation, and risk of death, respectively.</p><p><strong>Conclusion: </strong>CT quantification of pulmonary involvement using AI-based software helps predict COVID-19 patient outcomes (Tab. 4, Fig. 4, Ref. 38).</p>","PeriodicalId":55328,"journal":{"name":"Bratislava Medical Journal-Bratislavske Lekarske Listy","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bratislava Medical Journal-Bratislavske Lekarske Listy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4149/BLL_2024_25","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives:  This study aimed to predict individual COVID-19 patient prognosis at hospital admission using artificial intelligence (AI)-based quantification of computed tomography (CT) pulmonary involvement.

Background: Assessing patient prognosis in COVID-19 pneumonia is crucial for patient management and hospital and ICU organization.

Methods: We retrospectively analyzed 559 patients with PCR-verified COVID-19 pneumonia referred to the hospital for a severe disease course. We correlated the CT extent of pulmonary involvement with patient outcome. We also attempted to define cut-off values of pulmonary involvement for predicting different outcomes.

Results:  CT-based disease extent quantification is an independent predictor of patient morbidity and mortality, with the prognosis being impacted also by age and cardiovascular comorbidities. With the use of explored cut-off values, we divided patients into three groups based on their extent of disease: (1) less than 28 % (sensitivity 65.4 %; specificity 89.1 %), (2) ranging from 28 % (31 %) to 47 % (sensitivity 87.1 %; specificity 62.7 %), and (3) above 47 % (sensitivity 87.1 %; specificity, 62.7 %), representing low risk, risk for oxygen therapy and invasive pulmonary ventilation, and risk of death, respectively.

Conclusion: CT quantification of pulmonary involvement using AI-based software helps predict COVID-19 patient outcomes (Tab. 4, Fig. 4, Ref. 38).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 CT 量化 COVID-19 肺炎程度,预测个体化预后。
研究目的 本研究旨在利用基于人工智能(AI)的计算机断层扫描(CT)肺部受累量化技术,预测COVID-19患者入院时的个体预后:背景:评估COVID-19肺炎患者的预后对患者管理、医院和重症监护室的组织至关重要:我们回顾性分析了559例经PCR验证为COVID-19肺炎的重症转诊患者。我们将 CT 肺部受累程度与患者预后相关联。我们还试图确定肺部受累的临界值,以预测不同的结果: 结果:基于 CT 的疾病范围量化是预测患者发病率和死亡率的独立指标,年龄和心血管合并症也会影响预后。利用探索出的临界值,我们根据疾病范围将患者分为三组:(1) 小于 28 %(灵敏度 65.4 %;特异度 89.1 %),(2) 28 %(31 %)至 47 %(灵敏度 87.1 %;特异度 62.7 %),(3) 超过 47 %(灵敏度 87.1 %;特异度 62.7 %),分别代表低风险、氧治疗和有创肺通气风险以及死亡风险:结论:使用基于人工智能的软件对肺部受累进行 CT 定量有助于预测 COVID-19 患者的预后(表 4,图 4,参考文献 38)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
185
审稿时长
3-8 weeks
期刊介绍: The international biomedical journal - Bratislava Medical Journal – Bratislavske lekarske listy (Bratisl Lek Listy/Bratisl Med J) publishes peer-reviewed articles on all aspects of biomedical sciences, including experimental investigations with clear clinical relevance, original clinical studies and review articles.
期刊最新文献
Importance of CHB's grey zone: analysis of patients with HBeAg negative chronic hepatitis B virus infection. Prevalence of diastasis m. rectus abdominis and pelvic floor muscle dysfunction in postpartum women. The founding of the UPJS Faculty of Medicine from the memories of the first dean Prof. MUDr. Jan Knazovicky. 75th anniversary of the UPJS Faculty of Medicine in Kosice. The presence of glutathione peroxidase 8 (GPx8) in rat male genital organs. Use of hepatocyte transplantation after extensive liver resections in experiment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1