Brain Anatomy-Guided MRI Analysis for Assessing Clinical Progression of Cognitive Impairment with Structural MRI.

Lintao Zhang, Jinjian Wu, Lihong Wang, Li Wang, David C Steffens, Shijun Qiu, Guy G Potter, Mingxia Liu
{"title":"Brain Anatomy-Guided MRI Analysis for Assessing Clinical Progression of Cognitive Impairment with Structural MRI.","authors":"Lintao Zhang, Jinjian Wu, Lihong Wang, Li Wang, David C Steffens, Shijun Qiu, Guy G Potter, Mingxia Liu","doi":"10.1007/978-3-031-43993-3_11","DOIUrl":null,"url":null,"abstract":"<p><p>Brain structural MRI has been widely used for assessing future progression of cognitive impairment (CI) based on learning-based methods. Previous studies generally suffer from the limited number of labeled training data, while there exists a huge amount of MRIs in large-scale public databases. Even without task-specific label information, brain anatomical structures provided by these MRIs can be used to boost learning performance intuitively. Unfortunately, existing research seldom takes advantage of such brain anatomy prior. To this end, this paper proposes a brain anatomy-guided representation (BAR) learning framework for assessing the clinical progression of cognitive impairment with T1-weighted MRIs. The BAR consists of a <i>pretext model</i> and a <i>downstream model</i>, with a shared brain anatomy-guided encoder for MRI feature extraction. The pretext model also contains a decoder for brain tissue segmentation, while the downstream model relies on a predictor for classification. We first train the pretext model through a brain tissue segmentation task on 9,544 auxiliary T1-weighted MRIs, yielding a generalizable encoder. The downstream model with the learned encoder is further fine-tuned on target MRIs for prediction tasks. We validate the proposed BAR on two CI-related studies with a total of 391 subjects with T1-weighted MRIs. Experimental results suggest that the BAR outperforms several state-of-the-art (SOTA) methods. The source code and pre-trained models are available at https://github.com/goodaycoder/BAR.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"109-119"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883230/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43993-3_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain structural MRI has been widely used for assessing future progression of cognitive impairment (CI) based on learning-based methods. Previous studies generally suffer from the limited number of labeled training data, while there exists a huge amount of MRIs in large-scale public databases. Even without task-specific label information, brain anatomical structures provided by these MRIs can be used to boost learning performance intuitively. Unfortunately, existing research seldom takes advantage of such brain anatomy prior. To this end, this paper proposes a brain anatomy-guided representation (BAR) learning framework for assessing the clinical progression of cognitive impairment with T1-weighted MRIs. The BAR consists of a pretext model and a downstream model, with a shared brain anatomy-guided encoder for MRI feature extraction. The pretext model also contains a decoder for brain tissue segmentation, while the downstream model relies on a predictor for classification. We first train the pretext model through a brain tissue segmentation task on 9,544 auxiliary T1-weighted MRIs, yielding a generalizable encoder. The downstream model with the learned encoder is further fine-tuned on target MRIs for prediction tasks. We validate the proposed BAR on two CI-related studies with a total of 391 subjects with T1-weighted MRIs. Experimental results suggest that the BAR outperforms several state-of-the-art (SOTA) methods. The source code and pre-trained models are available at https://github.com/goodaycoder/BAR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用结构磁共振成像评估认知障碍临床进展的脑解剖学引导磁共振成像分析。
基于学习方法的脑结构磁共振成像已被广泛用于评估认知障碍(CI)的未来进展。以往的研究普遍存在标注训练数据数量有限的问题,而大规模公共数据库中存在大量核磁共振成像数据。即使没有特定任务的标签信息,这些核磁共振成像提供的大脑解剖结构也能直观地提高学习效率。遗憾的是,现有研究很少利用这些大脑解剖结构。为此,本文提出了一种大脑解剖引导表征(BAR)学习框架,用于通过 T1 加权核磁共振成像评估认知障碍的临床进展。BAR 由一个前置模型和一个下游模型组成,共享用于磁共振成像特征提取的脑解剖导向编码器。前导模型还包含一个用于脑组织分割的解码器,而下游模型则依靠一个预测器进行分类。我们首先通过对 9544 张辅助 T1 加权核磁共振图像进行脑组织分割任务来训练前置模型,从而获得可通用的编码器。使用所学编码器的下游模型在目标 MRI 上进一步微调,以完成预测任务。我们在两项与 CI 相关的研究中对所提出的 BAR 进行了验证,共有 391 名受试者接受了 T1 加权磁共振成像。实验结果表明,BAR 的性能优于几种最先进的 (SOTA) 方法。源代码和预训练模型可在 https://github.com/goodaycoder/BAR 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Zoom Pattern Signatures for Fetal Ultrasound Structures. Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases. Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. Attention-Enhanced Fusion of Structural and Functional MRI for Analyzing HIV-Associated Asymptomatic Neurocognitive Impairment. Tagged-to-Cine MRI Sequence Synthesis via Light Spatial-Temporal Transformer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1