Polyethylene is degraded by the deep-sea Acinetobacter venetianus bacterium

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Chemistry Letters Pub Date : 2024-02-23 DOI:10.1007/s10311-024-01708-4
Lina Lyu, Kejing Fang, Xiaomei Huang, Xinpeng Tian, Si Zhang
{"title":"Polyethylene is degraded by the deep-sea Acinetobacter venetianus bacterium","authors":"Lina Lyu,&nbsp;Kejing Fang,&nbsp;Xiaomei Huang,&nbsp;Xinpeng Tian,&nbsp;Si Zhang","doi":"10.1007/s10311-024-01708-4","DOIUrl":null,"url":null,"abstract":"<div><p>Polyethylene is a plastic pollutant impacting marine life, calling for advanced remediation methods such as biodegradation. However, there is actually limited information on polyethylene-degrading bacteria in the marine environment. Here, we studied bacterial degradation of polyethylene and associated phthalates additives using scanning electron microscopy, Fourier transform infrared, gel permeation chromatography and genomic and transcriptomic techniques. Results show that a deep-sea bacteria, <i>Acinetobacter venetianus</i> F1, can degrade 12.2% of polyethylene after 56 days, following the alkane metabolic pathway. Phthalates were also degraded via the metabolic pathways of benzoic acid and phthalic acid. This is first report of polyethylene-degrading bacteria from deep-sea environments.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1591 - 1597"},"PeriodicalIF":15.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01708-4","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyethylene is a plastic pollutant impacting marine life, calling for advanced remediation methods such as biodegradation. However, there is actually limited information on polyethylene-degrading bacteria in the marine environment. Here, we studied bacterial degradation of polyethylene and associated phthalates additives using scanning electron microscopy, Fourier transform infrared, gel permeation chromatography and genomic and transcriptomic techniques. Results show that a deep-sea bacteria, Acinetobacter venetianus F1, can degrade 12.2% of polyethylene after 56 days, following the alkane metabolic pathway. Phthalates were also degraded via the metabolic pathways of benzoic acid and phthalic acid. This is first report of polyethylene-degrading bacteria from deep-sea environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深海醋酸杆菌降解聚乙烯
聚乙烯是一种影响海洋生物的塑料污染物,需要采用生物降解等先进的补救方法。然而,有关海洋环境中聚乙烯降解细菌的信息实际上非常有限。在这里,我们利用扫描电子显微镜、傅立叶变换红外线、凝胶渗透色谱法以及基因组和转录组技术研究了细菌降解聚乙烯和相关邻苯二甲酸盐添加剂的情况。结果表明,深海细菌 Acinetobacter venetianus F1 在 56 天后可按照烷烃代谢途径降解 12.2% 的聚乙烯。邻苯二甲酸盐也可通过苯甲酸和邻苯二甲酸的代谢途径降解。这是首次报道深海环境中的聚乙烯降解细菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
期刊最新文献
Protecting mud crabs from pollution by microplastics, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, pesticides, and heavy metals in mangroves Hydrothermal gasification of waste biomass and plastics into hydrogen-rich syngas: a review Harnessing biostimulants from biogas digestates for high-value resource recovery: a review Generation, properties, and applications of singlet oxygen for wastewater treatment: a review Fluoropolymers and nanomaterials, the invisible hazards of cell phone and computer touchscreens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1