首页 > 最新文献

Environmental Chemistry Letters最新文献

英文 中文
Combined supramolecular solvent preparation and solid extraction
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-15 DOI: 10.1007/s10311-025-01819-6
Miriana Kfoury, Céline Alamichel, Sophie Fourmentin

Classical extraction involves several time-consuming and costly steps using toxic solvents. Here, we combined the preparation of a cyclodextrin-based supramolecular deep eutectic solvent and the extraction of spent coffee grounds by microwave irradiation in a single step. We tested two new solvents, randomly methylated-β-cyclodextrin:propylene glycol and hydroxypropyl-β-cyclodextrin:ethylene glycol, and compared the results with two classical solvents, chloride:urea (1:2) and ethanol/water 80/20 vol%. We also used classical Soxhlet extraction. We calculated the sustainability of the process using ComplexGAPI. Results show that the optimal one-step extraction conditions were 15 min of irradiation at 80 °C with the addition of 10 wt% water. Under these conditions, the two new solvents showed higher extraction yields of antioxidants and polyphenols than choline chloride:urea (1:2) or ethanol/water 80/20 vol%. Similarly, the half maximal effective concentration and gallic acid equivalent of the Soxhlet extracts were 5 and 3 times lower, respectively, than those obtained with hydroxypropyl-β-cyclodextrin:ethylene glycol (1:40) 10 wt% water. The composition of the extracts from the one-step process was similar to that of the Soxhlet extract. Sustainability analysis revealed low energy consumption, reduced unitary operations and less waste production.

{"title":"Combined supramolecular solvent preparation and solid extraction","authors":"Miriana Kfoury, Céline Alamichel, Sophie Fourmentin","doi":"10.1007/s10311-025-01819-6","DOIUrl":"https://doi.org/10.1007/s10311-025-01819-6","url":null,"abstract":"<p>Classical extraction involves several time-consuming and costly steps using toxic solvents. Here, we combined the preparation of a cyclodextrin-based supramolecular deep eutectic solvent and the extraction of spent coffee grounds by microwave irradiation in a single step. We tested two new solvents, randomly methylated-β-cyclodextrin:propylene glycol and hydroxypropyl-β-cyclodextrin:ethylene glycol, and compared the results with two classical solvents, chloride:urea (1:2) and ethanol/water 80/20 vol%. We also used classical Soxhlet extraction. We calculated the sustainability of the process using ComplexGAPI. Results show that the optimal one-step extraction conditions were 15 min of irradiation at 80 °C with the addition of 10 wt% water. Under these conditions, the two new solvents showed higher extraction yields of antioxidants and polyphenols than choline chloride:urea (1:2) or ethanol/water 80/20 vol%. Similarly, the half maximal effective concentration and gallic acid equivalent of the Soxhlet extracts were 5 and 3 times lower, respectively, than those obtained with hydroxypropyl-β-cyclodextrin:ethylene glycol (1:40) 10 wt% water. The composition of the extracts from the one-step process was similar to that of the Soxhlet extract. Sustainability analysis revealed low energy consumption, reduced unitary operations and less waste production.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"52 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyanobacteria for environmental, energy and biomedical application: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-12 DOI: 10.1007/s10311-024-01814-3
Xiaoya Ren, Mengqi Feng, Meiyi Mao, Xizi Long, Jiafeng Pan, Yan Tang, Pengji Zhou, Tangjian Peng, Hui Wang, Fei Yang

Cyanobacteria are photosynthetic prokaryotes and major contributors to global biogeochemical cycles. They possess powerful biological activity, high adaptability to extreme environment, rapid growth rate and genetic editability. Here, we review cyanobacteria with focus on their application in environmental pollution and biomedicine. Cyanobacteria can be used for pollutant removal, biofuel and biochar production, template for drug discovery, hypoxia-related disease therapy, anticancer, antiviral, antibacterial, antioxidant and antifibrotic. Spiral-shaped cyanobacteria are excellent carriers for drug delivery. The oxygen-producing capacity of cyanobacteria is promising in the treatment of hypoxia-related diseases.

{"title":"Cyanobacteria for environmental, energy and biomedical application: a review","authors":"Xiaoya Ren, Mengqi Feng, Meiyi Mao, Xizi Long, Jiafeng Pan, Yan Tang, Pengji Zhou, Tangjian Peng, Hui Wang, Fei Yang","doi":"10.1007/s10311-024-01814-3","DOIUrl":"https://doi.org/10.1007/s10311-024-01814-3","url":null,"abstract":"<p>Cyanobacteria are photosynthetic prokaryotes and major contributors to global biogeochemical cycles. They possess powerful biological activity, high adaptability to extreme environment, rapid growth rate and genetic editability. Here, we review cyanobacteria with focus on their application in environmental pollution and biomedicine. Cyanobacteria can be used for pollutant removal, biofuel and biochar production, template for drug discovery, hypoxia-related disease therapy, anticancer, antiviral, antibacterial, antioxidant and antifibrotic. Spiral-shaped cyanobacteria are excellent carriers for drug delivery. The oxygen-producing capacity of cyanobacteria is promising in the treatment of hypoxia-related diseases.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"87 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production, characterization, and toxicology of environmentally relevant nanoplastics: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-10 DOI: 10.1007/s10311-024-01810-7
Serena Ducoli, Gabriela Kalčíková, Milica Velimirovic, Laura E. Depero, Stefania Federici

Nanoplastic pollution is poorly known, in particular because research is actually mainly done using synthetic polymeric nanospheres that are not representative of environmental nanoplastics, which are very diverse in their composition, size, and shape. Here we review environmentally relevant nanoplastics with focus on their production, characterization, quantification, stability, aggregation, and toxicity. Production of environmentally relevant nanoplastics can be done by mechanical and physicochemical methods. Toxicological studies focus on internalization and toxicity on human cell lines, and bioaccumulation and systemic effects on model organisms.

{"title":"Production, characterization, and toxicology of environmentally relevant nanoplastics: a review","authors":"Serena Ducoli, Gabriela Kalčíková, Milica Velimirovic, Laura E. Depero, Stefania Federici","doi":"10.1007/s10311-024-01810-7","DOIUrl":"https://doi.org/10.1007/s10311-024-01810-7","url":null,"abstract":"<p>Nanoplastic pollution is poorly known, in particular because research is actually mainly done using synthetic polymeric nanospheres that are not representative of environmental nanoplastics, which are very diverse in their composition, size, and shape. Here we review environmentally relevant nanoplastics with focus on their production, characterization, quantification, stability, aggregation, and toxicity. Production of environmentally relevant nanoplastics can be done by mechanical and physicochemical methods. Toxicological studies focus on internalization and toxicity on human cell lines, and bioaccumulation and systemic effects on model organisms.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"49 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microalgae for microplastic removal from water and wastewater: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-05 DOI: 10.1007/s10311-024-01809-0
Paulo M. S. Sousa, Kerry A. Kinney, Cátia A. Sousa, Manuel Simões

The worldwide microplastic pollution in waters requires efficient removal techniques, yet actual wastewater treatment methods are limited. Here we review the use of microalgae for microplastic removal, with focus on microplastics in aquatic systems and wastewaters, legislation and regulations, common removal techniques, and microalgae for microplastic removal. We describe the mechanisms involved in microalgae-microplastics aggregation. We also present the criteria for selecting adequate microalgae for microplastics removal from wastewater.

{"title":"Microalgae for microplastic removal from water and wastewater: a review","authors":"Paulo M. S. Sousa, Kerry A. Kinney, Cátia A. Sousa, Manuel Simões","doi":"10.1007/s10311-024-01809-0","DOIUrl":"https://doi.org/10.1007/s10311-024-01809-0","url":null,"abstract":"<p>The worldwide microplastic pollution in waters requires efficient removal techniques, yet actual wastewater treatment methods are limited. Here we review the use of microalgae for microplastic removal, with focus on microplastics in aquatic systems and wastewaters, legislation and regulations, common removal techniques, and microalgae for microplastic removal. We describe the mechanisms involved in microalgae-microplastics aggregation. We also present the criteria for selecting adequate microalgae for microplastics removal from wastewater.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"72 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Underestimated sequestration of soil organic carbon in China
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-04 DOI: 10.1007/s10311-024-01813-4
Yulong Yin, Haiqing Gong, Zhong Chen, Xingshuai Tian, Yingcheng Wang, Zihan Wang, Kai He, Qi Miao, Yiyan Chu, Yanfang Xue, Qingsong Zhang, Zhenling Cui

Soil carbon sequestration is a climate engineering process that could significantly reduce global warming, yet actual estimates of soil organic carbon sequestration in China’s croplands are probably underestimated. Here we estimated soil organic carbon sequestration across China’s croplands from 1980 to 2018 using four different methods. We found that the average sequestration rate in China’s croplands is 298.5 kg ha−1. We present management strategies that could increase the mean soil organic carbon stock by 58.2 Mg ha−1. Insights into the potential for region-specific strategies to enhance soil carbon sequestration are given.

{"title":"Underestimated sequestration of soil organic carbon in China","authors":"Yulong Yin, Haiqing Gong, Zhong Chen, Xingshuai Tian, Yingcheng Wang, Zihan Wang, Kai He, Qi Miao, Yiyan Chu, Yanfang Xue, Qingsong Zhang, Zhenling Cui","doi":"10.1007/s10311-024-01813-4","DOIUrl":"https://doi.org/10.1007/s10311-024-01813-4","url":null,"abstract":"<p>Soil carbon sequestration is a climate engineering process that could significantly reduce global warming, yet actual estimates of soil organic carbon sequestration in China’s croplands are probably underestimated. Here we estimated soil organic carbon sequestration across China’s croplands from 1980 to 2018 using four different methods. We found that the average sequestration rate in China’s croplands is 298.5 kg ha<sup>−1</sup>. We present management strategies that could increase the mean soil organic carbon stock by 58.2 Mg ha<sup>−1</sup>. Insights into the potential for region-specific strategies to enhance soil carbon sequestration are given.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"2 2 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomics technologies in toxicity screening: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-03 DOI: 10.1007/s10311-024-01816-1
Yushi Jin, Zhejia Sun, April Z. Gu, Xiaohong Zhou

The presence of natural and synthetic toxic compounds in the environment requires the development of advanced detection methods. Here we review proteomics technologies for toxicity screening, with focus on principles, current status, mass spectrometry-based proteomics, protein microarray, and in-frame tagging method. Concerning mass spectrometry-based proteomics, we detail liquid chromatography-tandem mass spectrometry, label-free quantification, and thermal proteome profiling. We discuss the integration of the latest advances in proteomics technologies, such as single-cell proteomics, data-independent acquisition, and multi-omics approaches.

{"title":"Proteomics technologies in toxicity screening: a review","authors":"Yushi Jin, Zhejia Sun, April Z. Gu, Xiaohong Zhou","doi":"10.1007/s10311-024-01816-1","DOIUrl":"https://doi.org/10.1007/s10311-024-01816-1","url":null,"abstract":"<p>The presence of natural and synthetic toxic compounds in the environment requires the development of advanced detection methods. Here we review proteomics technologies for toxicity screening, with focus on principles, current status, mass spectrometry-based proteomics, protein microarray, and in-frame tagging method. Concerning mass spectrometry-based proteomics, we detail liquid chromatography-tandem mass spectrometry, label-free quantification, and thermal proteome profiling. We discuss the integration of the latest advances in proteomics technologies, such as single-cell proteomics, data-independent acquisition, and multi-omics approaches.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"28 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Destruction of chemical weapons stockpiles in the Russian Federation: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-03 DOI: 10.1007/s10311-024-01812-5
Tomas Rozsypal, Jaroslav Pejchal, Jakub Opravil, Mihail Haralampiev, Victor Bocos-Bintintan, Zbynek Kobliha

Chemical weapons, designed for mass harm, are posing risks of contamination, accidents, and ecological damage, and thus require their destruction. However, destruction of chemical weapons is challenging, notably in the Russian Federation due to the large scale and complexity of chemical weapons stockpiles, the diverse toxic agents stored under varying conditions, logistical and political obstacles, financial constraints, and the disposal process. Here we review the Russian Federation’s chemical weapons disposal program with an emphasis on the political context, declared chemical weapons stockpiles, methods for destruction, health and environmental issues, and nerve agents. We analyze stockpiles totaling nearly 40,000 tonnes of chemical agents across seven facilities, focusing on their composition, storage conditions, and destruction technologies. Methods such as neutralization, bituminization, and thermal destruction are compared. Environmental risks include arsenic migration and groundwater contamination near disposal sites. We observe the limitations of using bitumen salt masses as a safe disposal method.

{"title":"Destruction of chemical weapons stockpiles in the Russian Federation: a review","authors":"Tomas Rozsypal, Jaroslav Pejchal, Jakub Opravil, Mihail Haralampiev, Victor Bocos-Bintintan, Zbynek Kobliha","doi":"10.1007/s10311-024-01812-5","DOIUrl":"https://doi.org/10.1007/s10311-024-01812-5","url":null,"abstract":"<p>Chemical weapons, designed for mass harm, are posing risks of contamination, accidents, and ecological damage, and thus require their destruction. However, destruction of chemical weapons is challenging, notably in the Russian Federation due to the large scale and complexity of chemical weapons stockpiles, the diverse toxic agents stored under varying conditions, logistical and political obstacles, financial constraints, and the disposal process. Here we review the Russian Federation’s chemical weapons disposal program with an emphasis on the political context, declared chemical weapons stockpiles, methods for destruction, health and environmental issues, and nerve agents. We analyze stockpiles totaling nearly 40,000 tonnes of chemical agents across seven facilities, focusing on their composition, storage conditions, and destruction technologies. Methods such as neutralization, bituminization, and thermal destruction are compared. Environmental risks include arsenic migration and groundwater contamination near disposal sites. We observe the limitations of using bitumen salt masses as a safe disposal method.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"56 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro-scale mapping of soil organic carbon using soft X-ray spectromicroscopy
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-02 DOI: 10.1007/s10311-024-01817-0
Maoz Dor, Tom Regier, Zachary Arthur, Andrey K. Guber, Alexandra N. Kravchenko

Soil organic carbon is crucial for soil fertility, productivity, and global carbon cycling. Despite significant progress in understanding carbon persistence and turnover, the underlying mechanisms require further study. A key challenge is visualizing and characterizing the spatial distribution of carbon within intact soil. This study introduces a novel approach to map carbon content at 35 µm resolution and composition at 22 µm resolution in intact environmental samples using synchrotron X-ray spectromicroscopy. X-ray fluorescence maps provided an overview of total carbon distribution, identifying carbon-rich regions. Near-edge X-ray absorption fine structure spectromicroscopy was then used to obtain spatially resolved carbon speciation data within these regions. This method allowed the analysis of relatively large intact samples, of 16 mm in diameter and 15 mm in height, preserving various root and organic matter fragments as well as pores ranging between 35 and 850 µm. Spectral fitting with reference standards revealed distinct spatial patterns of aromatic, aliphatic, and carboxylic carbon compounds associated with different structural features. Aromatic carbon was enriched around root fragments and the soil matrix; while, carboxylic compounds were concentrated at pore–matrix interfaces, indicating a correlation between soil pore structure and carbon chemical composition. This novel approach provides significant insights into the interplay between pore architecture and organic molecular diversity, key factors governing carbon protection and persistence in soils.

{"title":"Micro-scale mapping of soil organic carbon using soft X-ray spectromicroscopy","authors":"Maoz Dor, Tom Regier, Zachary Arthur, Andrey K. Guber, Alexandra N. Kravchenko","doi":"10.1007/s10311-024-01817-0","DOIUrl":"https://doi.org/10.1007/s10311-024-01817-0","url":null,"abstract":"<p>Soil organic carbon is crucial for soil fertility, productivity, and global carbon cycling. Despite significant progress in understanding carbon persistence and turnover, the underlying mechanisms require further study. A key challenge is visualizing and characterizing the spatial distribution of carbon within intact soil. This study introduces a novel approach to map carbon content at 35 µm resolution and composition at 22 µm resolution in intact environmental samples using synchrotron X-ray spectromicroscopy. X-ray fluorescence maps provided an overview of total carbon distribution, identifying carbon-rich regions. Near-edge X-ray absorption fine structure spectromicroscopy was then used to obtain spatially resolved carbon speciation data within these regions. This method allowed the analysis of relatively large intact samples, of 16 mm in diameter and 15 mm in height, preserving various root and organic matter fragments as well as pores ranging between 35 and 850 µm. Spectral fitting with reference standards revealed distinct spatial patterns of aromatic, aliphatic, and carboxylic carbon compounds associated with different structural features. Aromatic carbon was enriched around root fragments and the soil matrix; while, carboxylic compounds were concentrated at pore–matrix interfaces, indicating a correlation between soil pore structure and carbon chemical composition. This novel approach provides significant insights into the interplay between pore architecture and organic molecular diversity, key factors governing carbon protection and persistence in soils.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"60 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional clothing, an overlooked source of persistent textile fibers in the global microplastic pollution
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-02 DOI: 10.1007/s10311-024-01796-2
Ya Gao, Feng Ning, Hui Wang, Jie Han, Eric Lichtfouse
{"title":"Functional clothing, an overlooked source of persistent textile fibers in the global microplastic pollution","authors":"Ya Gao, Feng Ning, Hui Wang, Jie Han, Eric Lichtfouse","doi":"10.1007/s10311-024-01796-2","DOIUrl":"https://doi.org/10.1007/s10311-024-01796-2","url":null,"abstract":"","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"27 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Respiratory toxicity of amorphous silica nanoparticles: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-30 DOI: 10.1007/s10311-024-01787-3
Hailin Xu, Yan Li, Xinying Zhao, Caixia Guo, Yanbo Li

Silica nanoparticles exert detrimental effects on the respiratory system, regardless of the exposure route. The adverse outcome pathway framework has been recently developed in toxicological research to characterize the pathways that lead to harmful outcomes. Here, we review the adverse effects of amorphous silica nanoparticles on respiratory health with focus on underlying mechanisms and influencing factors, using the adverse outcome pathway framework for the first time. We found that the increase in reactive oxygen species levels induces oxidative stress and leads to mitochondrial dysfunction. Molecular changes further lead to cellular alterations such as epithelial injury, macrophage, and fibroblast activation. Respiratory cellular damage further induces inflammation and fibrosis in the lungs and airways.

{"title":"Respiratory toxicity of amorphous silica nanoparticles: a review","authors":"Hailin Xu, Yan Li, Xinying Zhao, Caixia Guo, Yanbo Li","doi":"10.1007/s10311-024-01787-3","DOIUrl":"https://doi.org/10.1007/s10311-024-01787-3","url":null,"abstract":"<p>Silica nanoparticles exert detrimental effects on the respiratory system, regardless of the exposure route. The adverse outcome pathway framework has been recently developed in toxicological research to characterize the pathways that lead to harmful outcomes. Here, we review the adverse effects of amorphous silica nanoparticles on respiratory health with focus on underlying mechanisms and influencing factors, using the adverse outcome pathway framework for the first time. We found that the increase in reactive oxygen species levels induces oxidative stress and leads to mitochondrial dysfunction. Molecular changes further lead to cellular alterations such as epithelial injury, macrophage, and fibroblast activation. Respiratory cellular damage further induces inflammation and fibrosis in the lungs and airways.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"161 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Chemistry Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1