首页 > 最新文献

Environmental Chemistry Letters最新文献

英文 中文
Detection of aflatoxin B1 using DNA sensors: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-04-17 DOI: 10.1007/s10311-025-01842-7
Tianhan Xie, Eric Lichtfouse, Zaina Omary Mochiwa, Jin Wang, Bangxing Han, Li Gao

Aflatoxin B1 is a mycotoxin produced by the fungus Aspergillus that contaminates food, notably grains and peanuts. Aflatoxin B1 is hepatotoxic, causing necrosis, and cirrhosis, and is classified as an hepatocarcinogen. Traditional methods for detecting aflatoxin B1 such as thin-layer chromatography, high-performance liquid chromatography, enzyme-linked immunoassay, and liquid chromatography–tandem mass spectrometry, have limitations including high costs, complex preparation procedures, and occasionally low sensitivity. Here, we review DNA-based biosensors for aflatoxin B1 detection with emphasis on electrochemical and optical sensors. Electrochemical biosensors are based on electrochemical impedance spectroscopy, amperometry, voltammetry, and potentiometry. Optical sensors involve colorimetry, surface plasmon resonance, fluorescence, and electrochemiluminescence. Sensors combine nano and composite materials, such as gold nanoparticles, black phosphorus nanosheets, graphene oxide, niobium carbide, photonic crystals, and liquid crystals. DNA-based biosensors, such as aptamer biosensors, are efficient, rapid, sensitive, affordable, and selective to detecting contaminants and pathogens.

{"title":"Detection of aflatoxin B1 using DNA sensors: a review","authors":"Tianhan Xie, Eric Lichtfouse, Zaina Omary Mochiwa, Jin Wang, Bangxing Han, Li Gao","doi":"10.1007/s10311-025-01842-7","DOIUrl":"https://doi.org/10.1007/s10311-025-01842-7","url":null,"abstract":"<p>Aflatoxin B1 is a mycotoxin produced by the fungus <i>Aspergillus</i> that contaminates food, notably grains and peanuts. Aflatoxin B1 is hepatotoxic, causing necrosis, and cirrhosis, and is classified as an hepatocarcinogen. Traditional methods for detecting aflatoxin B1 such as thin-layer chromatography, high-performance liquid chromatography, enzyme-linked immunoassay, and liquid chromatography–tandem mass spectrometry, have limitations including high costs, complex preparation procedures, and occasionally low sensitivity. Here, we review DNA-based biosensors for aflatoxin B1 detection with emphasis on electrochemical and optical sensors. Electrochemical biosensors are based on electrochemical impedance spectroscopy, amperometry, voltammetry, and potentiometry. Optical sensors involve colorimetry, surface plasmon resonance, fluorescence, and electrochemiluminescence. Sensors combine nano and composite materials, such as gold nanoparticles, black phosphorus nanosheets, graphene oxide, niobium carbide, photonic crystals, and liquid crystals. DNA-based biosensors, such as aptamer biosensors, are efficient, rapid, sensitive, affordable, and selective to detecting contaminants and pathogens.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"27 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143847279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solidification and removal of impurities from phosphogypsum for road applications: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-04-14 DOI: 10.1007/s10311-025-01839-2
Xiang Liu, Xianglin He, Yudong Dang, Xiaolong Li, Jun Yang, Wei Shi

Phosphogypsum, a major by-product of phosphoric acid production, can be recycled. Nonetheless, phosphogypsum contains impurities such as heavy metals, fluoride, and phosphate, which can decrease the performance and contaminate the environment, calling for pretreatment or solidification methods. Here, we review phosphogypsum with emphasis on impurities and their hazards, solidification methods, and treatment methods for use in road construction. Solidification involves blending phosphogypsum with inorganic cementitious materials, adding additives, geopolymers, biological treatments, and biochar adsorption. Phosphogypsum can be blended with electrolytic manganese residues, granulated blast furnace slag, and inorganic cementitious materials. Additives comprise polymers, surface modifiers, and curing agents. We observe that solidification methods display more advantages than pretreatment methods. The combination of phosphogypsum with inorganic cementitious materials, polymer surface modifiers, curing agents, geopolymer materials, and biomass materials can effectively solidify various impurities, though the effectiveness varies across different solidification methods. There are four solidification mechanisms: physical encapsulation, chemical precipitation, ion exchange, and adsorption. When solidified in road engineering applications, phosphogypsum show reduced leaching levels of arsenic, lead, while maintaining a good road performance.

{"title":"Solidification and removal of impurities from phosphogypsum for road applications: a review","authors":"Xiang Liu, Xianglin He, Yudong Dang, Xiaolong Li, Jun Yang, Wei Shi","doi":"10.1007/s10311-025-01839-2","DOIUrl":"https://doi.org/10.1007/s10311-025-01839-2","url":null,"abstract":"<p>Phosphogypsum, a major by-product of phosphoric acid production, can be recycled. Nonetheless, phosphogypsum contains impurities such as heavy metals, fluoride, and phosphate, which can decrease the performance and contaminate the environment, calling for pretreatment or solidification methods. Here, we review phosphogypsum with emphasis on impurities and their hazards, solidification methods, and treatment methods for use in road construction. Solidification involves blending phosphogypsum with inorganic cementitious materials, adding additives, geopolymers, biological treatments, and biochar adsorption. Phosphogypsum can be blended with electrolytic manganese residues, granulated blast furnace slag, and inorganic cementitious materials. Additives comprise polymers, surface modifiers, and curing agents. We observe that solidification methods display more advantages than pretreatment methods. The combination of phosphogypsum with inorganic cementitious materials, polymer surface modifiers, curing agents, geopolymer materials, and biomass materials can effectively solidify various impurities, though the effectiveness varies across different solidification methods. There are four solidification mechanisms: physical encapsulation, chemical precipitation, ion exchange, and adsorption. When solidified in road engineering applications, phosphogypsum show reduced leaching levels of arsenic, lead, while maintaining a good road performance.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"23 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143827622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conserved specificity of extracellular wastewater peptidases revealed by multiplex substrate profiling by mass spectrometry 质谱法多重底物分析揭示细胞外废水肽酶的保守特异性
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-04-12 DOI: 10.1007/s10311-025-01834-7
Natalie Wichmann, Josephine Meibom, Tamar Kohn, Michael Zumstein

Peptide-based chemicals are promising for numerous applications including home and personal care and medical treatments. To better understand and control the environmental fate of peptide-based chemicals, in-depth knowledge on the specificity of wastewater peptidases is needed. Here, we employed multiplex substrate profiling by mass spectrometry to obtain specificity profiles of extracellular peptidases derived from influent and aeration tanks of three full-scale wastewater treatment plants. Specificities were confirmed by fluorogenic peptidase substrates. Our results revealed highly similar specificity profiles across wastewater treatment plants. We found that hydrolysis by extracellular wastewater peptidases is favored when positively charged amino acid residues surround the cleavage site and disfavored when negatively charged amino acid residues surround the cleavage site.

{"title":"Conserved specificity of extracellular wastewater peptidases revealed by multiplex substrate profiling by mass spectrometry","authors":"Natalie Wichmann, Josephine Meibom, Tamar Kohn, Michael Zumstein","doi":"10.1007/s10311-025-01834-7","DOIUrl":"https://doi.org/10.1007/s10311-025-01834-7","url":null,"abstract":"<p> Peptide-based chemicals are promising for numerous applications including home and personal care and medical treatments. To better understand and control the environmental fate of peptide-based chemicals, in-depth knowledge on the specificity of wastewater peptidases is needed. Here, we employed multiplex substrate profiling by mass spectrometry to obtain specificity profiles of extracellular peptidases derived from influent and aeration tanks of three full-scale wastewater treatment plants. Specificities were confirmed by fluorogenic peptidase substrates. Our results revealed highly similar specificity profiles across wastewater treatment plants. We found that hydrolysis by extracellular wastewater peptidases is favored when positively charged amino acid residues surround the cleavage site and disfavored when negatively charged amino acid residues surround the cleavage site.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"110 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143824930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dual role of tropospheric ozone in controlling COVID-19 outbreaks
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-04-09 DOI: 10.1007/s10311-025-01840-9
Yinon Yecheskel, Noa Sand, Lu Zhang, Yaal Lester, Michal Segal-Rozenhaimer, Ines Zucker

The coronavirus disease COVID-19 is primarily transmitted through person-to-person contact, but meteorological conditions may influence its spread and severity. High levels of indoor ozone are known to inactivate the virus, yet the impact of low-level tropospheric ozone remains unclear. We thus hypothesized that tropospheric ozone, influenced by seasonal conditions, may mitigate viral spread. We studied the influence of ozone concentration, temperature, and humidity on the COVID-19 reproduction number in three large Israeli cities during 2020–2021. The effect of these parameters was also analyzed in laboratory experiments on viral inactivation. Field results show that in winter, under low temperature and low humidity, the COVID-19 reproduction number decreases with an increase in ozone concentration. In contrast, in the summer, under high temperature and high humidity, the COVID-19 reproduction number increases weakly with an increase in ozone concentration. This seasonal variation is attributed to ozone’s dual effects. Indeed, in winter, ozone inactivates the virus, whereas in summer, ozone primarily impacts human respiratory health, which indirectly favors COVID-19 transmission. Nonetheless, experimental results did not fully align with the field survey, showing increased virus inactivation with an increase in temperature.

{"title":"The dual role of tropospheric ozone in controlling COVID-19 outbreaks","authors":"Yinon Yecheskel, Noa Sand, Lu Zhang, Yaal Lester, Michal Segal-Rozenhaimer, Ines Zucker","doi":"10.1007/s10311-025-01840-9","DOIUrl":"https://doi.org/10.1007/s10311-025-01840-9","url":null,"abstract":"<p>The coronavirus disease COVID-19 is primarily transmitted through person-to-person contact, but meteorological conditions may influence its spread and severity. High levels of indoor ozone are known to inactivate the virus, yet the impact of low-level tropospheric ozone remains unclear. We thus hypothesized that tropospheric ozone, influenced by seasonal conditions, may mitigate viral spread. We studied the influence of ozone concentration, temperature, and humidity on the COVID-19 reproduction number in three large Israeli cities during 2020–2021. The effect of these parameters was also analyzed in laboratory experiments on viral inactivation. Field results show that in winter, under low temperature and low humidity, the COVID-19 reproduction number decreases with an increase in ozone concentration. In contrast, in the summer, under high temperature and high humidity, the COVID-19 reproduction number increases weakly with an increase in ozone concentration. This seasonal variation is attributed to ozone’s dual effects. Indeed, in winter, ozone inactivates the virus, whereas in summer, ozone primarily impacts human respiratory health, which indirectly favors COVID-19 transmission. Nonetheless, experimental results did not fully align with the field survey, showing increased virus inactivation with an increase in temperature.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"17 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143814081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Occurrence, analysis, and toxicity of polyethylene terephthalate microplastics: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-04-05 DOI: 10.1007/s10311-025-01841-8
Mohamed Alaraby, Doaa Abass, Antonia Velázquez, Alba Hernández, Ricard Marcos

Global microplastic contamination of almost all biological and environmental media is an emerging threat to human health that recently fostered intense research. Here, we review polyethylene terephthalate with focus on microplastics, characteristics, uses, concentration, degradation, toxicity, and remediation. Plastic remediation can be done by landfills, incineration, pyrolysis, and biodegradation. We present microplastic occurrence in food, beverages, dust, wildlife, and human tissues. We observed inconsistencies in measurement techniques, limitations in detection reliability, and gaps in risk assessment.

{"title":"Occurrence, analysis, and toxicity of polyethylene terephthalate microplastics: a review","authors":"Mohamed Alaraby, Doaa Abass, Antonia Velázquez, Alba Hernández, Ricard Marcos","doi":"10.1007/s10311-025-01841-8","DOIUrl":"https://doi.org/10.1007/s10311-025-01841-8","url":null,"abstract":"<p>Global microplastic contamination of almost all biological and environmental media is an emerging threat to human health that recently fostered intense research. Here, we review polyethylene terephthalate with focus on microplastics, characteristics, uses, concentration, degradation, toxicity, and remediation. Plastic remediation can be done by landfills, incineration, pyrolysis, and biodegradation. We present microplastic occurrence in food, beverages, dust, wildlife, and human tissues. We observed inconsistencies in measurement techniques, limitations in detection reliability, and gaps in risk assessment.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"73 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143782439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scandium as a reference element for quantifying the natural and anthropogenic concentrations of lead in surface water and groundwater
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-04-01 DOI: 10.1007/s10311-025-01824-9
William Shotyk, Beatriz Bicalho, Iain Grant-Weaver, Michael Krachler, Tommy Noernberg, Jiancheng Zheng

Scandium has been used to distinguish between natural and anthropogenic sources of lead to the atmosphere. Here, scandium is used to estimate the natural abundance of lead in surface and groundwater. In pristine groundwater sampled at the Elmvale Groundwater Observatory in southern Ontario, the lead/scandium mass ratio (Pb/Sc) ranges from 1.1 to 1.2, similar to the ratio (1.2) most recently proposed for the Upper Continental Crust. In the Athabasca River of northern Alberta, where dissolved lead is well below the global average for uncontaminated river water, the average Pb/Sc ratio was 2.2 in 2014 and in 2015, consistent with the Pb/Sc ratio recently compiled for soil (2.3). In contrast, the average Pb/Sc ratio in the rivers and lakes of central Ontario was 6.0, reflecting the far larger cumulative inputs of anthropogenic, atmospheric lead in eastern Canada compared to western Canada. Support for this interpretation comes from contemporary snow from southern Ontario with an average Pb/Sc ratio of 400. Despite the profound differences in the geology of the study regions, and ignoring the geochemical processes affecting both elements in the watersheds, scandium appears to be a helpful, simple tool for estimating the natural abundance of lead in surface and groundwater. However, the use of the Pb/Sc ratio in this way depends critically on accurate, precise and sensitive measurements of both elements. While the problems of low level lead determinations are well known, those of scandium may have been underestimated.

{"title":"Scandium as a reference element for quantifying the natural and anthropogenic concentrations of lead in surface water and groundwater","authors":"William Shotyk, Beatriz Bicalho, Iain Grant-Weaver, Michael Krachler, Tommy Noernberg, Jiancheng Zheng","doi":"10.1007/s10311-025-01824-9","DOIUrl":"https://doi.org/10.1007/s10311-025-01824-9","url":null,"abstract":"<p>Scandium has been used to distinguish between natural and anthropogenic sources of lead to the atmosphere. Here, scandium is used to estimate the natural abundance of lead in surface and groundwater. In pristine groundwater sampled at the Elmvale Groundwater Observatory in southern Ontario, the lead/scandium mass ratio (Pb/Sc) ranges from 1.1 to 1.2, similar to the ratio (1.2) most recently proposed for the Upper Continental Crust. In the Athabasca River of northern Alberta, where dissolved lead is well below the global average for uncontaminated river water, the average Pb/Sc ratio was 2.2 in 2014 and in 2015, consistent with the Pb/Sc ratio recently compiled for soil (2.3). In contrast, the average Pb/Sc ratio in the rivers and lakes of central Ontario was 6.0, reflecting the far larger cumulative inputs of anthropogenic, atmospheric lead in eastern Canada compared to western Canada. Support for this interpretation comes from contemporary snow from southern Ontario with an average Pb/Sc ratio of 400. Despite the profound differences in the geology of the study regions, and ignoring the geochemical processes affecting both elements in the watersheds, scandium appears to be a helpful, simple tool for estimating the natural abundance of lead in surface and groundwater. However, the use of the Pb/Sc ratio in this way depends critically on accurate, precise and sensitive measurements of both elements. While the problems of low level lead determinations are well known, those of scandium may have been underestimated.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"38 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143758402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature-dependent oxocarboxylic acid photoproduction from crude oil on water
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-31 DOI: 10.1007/s10311-025-01838-3
Mohamed Elsheref, Matthew A. Tarr

Oxocarboxylic acids are produced when oil is exposed to sunlight and are photo-dissolved in the aqueous phase in oil–water systems, impacting the fate, transport, and impact of spilled oil. However, temperature effects on these reactions are unknown, thus we investigate oxocarboxylic acid photoproduction from irradiated oil–water systems. Oil samples include British Petroleum crude, Deepwater Horizon crude, Maya crude from Mexico, SRM 2717a oil from the National Institute of Standards and Technology, and an Alaskan crude. Oils were spread over water and exposed to simulated sunlight for 6 h at 12, 25, and 35 °C, followed by quantifying oxocarboxylic acid abundance and dissolved organic carbon in the water. Treatment with 2,4-dinitrophenyl hydrazine produced hydrazones, enriched using solid phase extraction and analyzed by using electrospray ionization-tandem mass spectrometry. Results show that temperature and oxocarboxylic acid photoproduction exhibit a complex relationship; however, oil behavior was similar with temperature. Dissolved organic carbon increased with irradiation temperature for photosolubilized oil. Deepwater Horizon oil showed high-temperature sensitivity with dissolved organic carbon production of 12.6 ppm at 35 °C versus 6.0 ppm at 12 °C. Low molecular weight species are easily volatilized, while larger molecules require greater photooxygenation to become substantially water soluble.

{"title":"Temperature-dependent oxocarboxylic acid photoproduction from crude oil on water","authors":"Mohamed Elsheref, Matthew A. Tarr","doi":"10.1007/s10311-025-01838-3","DOIUrl":"https://doi.org/10.1007/s10311-025-01838-3","url":null,"abstract":"<p>Oxocarboxylic acids are produced when oil is exposed to sunlight and are photo<b>-</b>dissolved in the aqueous phase in oil–water systems, impacting the fate, transport, and impact of spilled oil. However, temperature effects on these reactions are unknown, thus we investigate oxocarboxylic acid photoproduction from irradiated oil–water systems. Oil samples include British Petroleum crude, Deepwater Horizon crude, Maya crude from Mexico, SRM 2717a oil from the National Institute of Standards and Technology, and an Alaskan crude. Oils were spread over water and exposed to simulated sunlight for 6 h at 12, 25, and 35 °C, followed by quantifying oxocarboxylic acid abundance and dissolved organic carbon in the water. Treatment with 2,4-dinitrophenyl hydrazine produced hydrazones, enriched using solid phase extraction and analyzed by using electrospray ionization-tandem mass spectrometry. Results show that temperature and oxocarboxylic acid photoproduction exhibit a complex relationship; however, oil behavior was similar with temperature. Dissolved organic carbon increased with irradiation temperature for photosolubilized oil. Deepwater Horizon oil showed high-temperature sensitivity with dissolved organic carbon production of 12.6 ppm at 35 °C versus 6.0 ppm at 12 °C. Low molecular weight species are easily volatilized, while larger molecules require greater photooxygenation to become substantially water soluble.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"38 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143745284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recycling traditional Chinese medicine residues: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-28 DOI: 10.1007/s10311-025-01837-4
Xiaowei Wu, Dai Dai, Na Li, Haixin Zheng, Cuixia Wang, Weixiong Lin, Liaoyuan Liu, Zheng Zhang, Jörg Rinklebe, Carol Sze Ki Lin, Wen Rui, Chong Li

Traditional Chinese medicine has a rich history in the diagnosis and treatment of diseases, yet the disposal of medicine residues by incineration and landfilling is challenging. Here we review methods to recycle Chinese medicine residues with focus on challenges, recycling solutions, and case studies. Cases studies include extraction of bioactive compounds, use as feed additives, and biochar-based materials. We observed that residues from single-compound medicines are easier to extract and recycle into animal feed additives or adsorbents. Technical and economic analysis show that the valorisation of single-compound medicine residues is profitable. For instance, the re-extraction cost of flavonoids is 25.8–36.6% lower than the market price, and the cost as feed additives represents 14.7% of the market prices.

{"title":"Recycling traditional Chinese medicine residues: a review","authors":"Xiaowei Wu, Dai Dai, Na Li, Haixin Zheng, Cuixia Wang, Weixiong Lin, Liaoyuan Liu, Zheng Zhang, Jörg Rinklebe, Carol Sze Ki Lin, Wen Rui, Chong Li","doi":"10.1007/s10311-025-01837-4","DOIUrl":"https://doi.org/10.1007/s10311-025-01837-4","url":null,"abstract":"<p>Traditional Chinese medicine has a rich history in the diagnosis and treatment of diseases, yet the disposal of medicine residues by incineration and landfilling is challenging. Here we review methods to recycle Chinese medicine residues with focus on challenges, recycling solutions, and case studies. Cases studies include extraction of bioactive compounds, use as feed additives, and biochar-based materials. We observed that residues from single-compound medicines are easier to extract and recycle into animal feed additives or adsorbents. Technical and economic analysis show that the valorisation of single-compound medicine residues is profitable. For instance, the re-extraction cost of flavonoids is 25.8–36.6% lower than the market price, and the cost as feed additives represents 14.7% of the market prices.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"20 9 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143734370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrovoltaic technologies for self-powered sensing and pollutant removal in water and wastewater: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-22 DOI: 10.1007/s10311-025-01836-5
Shipu Jiao, Yushi Jin, Eric Lichtfouse, Xiaohong Zhou

Carbon emissions from the water and wastewater treatment sector account for about 2% of global carbon emissions, calling for the integration of sustainable energies to decrease carbon footprints. Here we review the use of hydrovoltaic technologies in water and wastewater treatment, with emphasis on the hydrovoltaic effect, self-powered sensors, and pollutant removal. The hydrovoltaic effect can be obtained using moisture-induced hydrovoltaic generators and water evaporation-induced hydrovoltaic generators. Strain, pressure, humidity, gas, and liquid sensors can be powered by hydrovoltaic generators. Remarkably, the hydrovoltaic technology-driven liquid sensors can reach a detection limit of 1 femtomolar. The hydrovoltaic technology reduces pollution in two ways, first by generating electricity from environmental moisture and evaporation, thereby reducing fossil fuel dependency. Second, it takes advantage of the photocatalytic properties of materials to decompose organic matter during water treatment, thus minimizing the usage of chemical reagents. Applications comprise wastewater power generation, seawater desalination and organic matter degradation.

水和废水处理行业的碳排放量约占全球碳排放量的 2%,因此需要整合可持续能源以减少碳足迹。在此,我们回顾了水力伏打技术在水和废水处理中的应用,重点是水力伏打效应、自供电传感器和污染物去除。水伏特效应可通过湿气诱导水伏特发生器和水蒸发诱导水伏特发生器获得。应变、压力、湿度、气体和液体传感器均可由水伏特发生器供电。值得注意的是,水伏特技术驱动的液体传感器的检测限可达到 1 飞摩尔。水伏特技术通过两种方式减少污染,首先是利用环境中的水分和蒸发产生电能,从而减少对化石燃料的依赖。其次,它利用材料的光催化特性,在水处理过程中分解有机物,从而最大限度地减少化学试剂的使用。其应用包括废水发电、海水淡化和有机物降解。
{"title":"Hydrovoltaic technologies for self-powered sensing and pollutant removal in water and wastewater: a review","authors":"Shipu Jiao, Yushi Jin, Eric Lichtfouse, Xiaohong Zhou","doi":"10.1007/s10311-025-01836-5","DOIUrl":"https://doi.org/10.1007/s10311-025-01836-5","url":null,"abstract":"<p>Carbon emissions from the water and wastewater treatment sector account for about 2% of global carbon emissions, calling for the integration of sustainable energies to decrease carbon footprints. Here we review the use of hydrovoltaic technologies in water and wastewater treatment, with emphasis on the hydrovoltaic effect, self-powered sensors, and pollutant removal. The hydrovoltaic effect can be obtained using moisture-induced hydrovoltaic generators and water evaporation-induced hydrovoltaic generators. Strain, pressure, humidity, gas, and liquid sensors can be powered by hydrovoltaic generators. Remarkably, the hydrovoltaic technology-driven liquid sensors can reach a detection limit of 1 femtomolar. The hydrovoltaic technology reduces pollution in two ways, first by generating electricity from environmental moisture and evaporation, thereby reducing fossil fuel dependency. Second, it takes advantage of the photocatalytic properties of materials to decompose organic matter during water treatment, thus minimizing the usage of chemical reagents. Applications comprise wastewater power generation, seawater desalination and organic matter degradation.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"18 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143672777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The antioxidant properties of green carbon dots: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-21 DOI: 10.1007/s10311-025-01831-w
Neha Sharma, Anshul Sharma, Hae-Jeung Lee

The generation of reactive species and their derivatives, whether in the human body or in the food systems, contributes to various human diseases and compromises food quality. Unfortunately, both natural and synthetic antioxidants have specific limitations. Green chemistry-derived carbon dots offer a promising solution in this regard. Here we review the antioxidant activity of green synthesized carbon dots. The review commences with an overview of carbon dots, their properties, and the top-down and bottom-up synthesis approaches, along with their merits and drawbacks. Furthermore, the importance of the green chemistry concept is highlighted. The role of different functional groups in carbon dots attributed to their antioxidant activity is emphasized. Subsequently, the review elucidates several methods commonly utilized to evaluate the antioxidant activity of carbon dots together with a discussion on various oxidative and non-oxidative stress markers. The review compiles a variety of ex vivo, in vitro, and in vivo studies underscoring the antioxidant activity of pristine and doped carbon dots. Among all studies, the hydrothermal method was observed to be a popular synthesis approach. Out of 87 studies, 38 exclusively assessed the 2,2-diphenyl-1-picrylhydrazyl-scavenging properties of pristine and doped carbon dots with half-maximum effective concentration values ranging from 2.7 to 524 μg mL−1. The subsequent studies recorded the scavenging of other radicals alongside 2,2-diphenyl-1-picrylhydrazyl, with 18, 14, 10, 5, and 2 studies demonstrating the scavenging efficacy of carbon dots for hydroxyl, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), superoxide, hydrogen peroxide, and nitric oxide radicals, respectively. Furthermore, 18 studies reported the antioxidant property of carbon dots in cell, animal, and vertebrate models by modulating oxidative stress markers and upregulating the expressions of various antioxidant enzymes. The review also highlights the prooxidant nature of green carbon dots briefly. Finally, the paper delves into the practical applications of carbon dots in the food, agricultural, and environmental sectors.

{"title":"The antioxidant properties of green carbon dots: a review","authors":"Neha Sharma, Anshul Sharma, Hae-Jeung Lee","doi":"10.1007/s10311-025-01831-w","DOIUrl":"https://doi.org/10.1007/s10311-025-01831-w","url":null,"abstract":"<p>The generation of reactive species and their derivatives, whether in the human body or in the food systems, contributes to various human diseases and compromises food quality. Unfortunately, both natural and synthetic antioxidants have specific limitations. Green chemistry-derived carbon dots offer a promising solution in this regard. Here we review the antioxidant activity of green synthesized carbon dots. The review commences with an overview of carbon dots, their properties, and the top-down and bottom-up synthesis approaches, along with their merits and drawbacks. Furthermore, the importance of the green chemistry concept is highlighted. The role of different functional groups in carbon dots attributed to their antioxidant activity is emphasized. Subsequently, the review elucidates several methods commonly utilized to evaluate the antioxidant activity of carbon dots together with a discussion on various oxidative and non-oxidative stress markers. The review compiles a variety of ex vivo, in vitro, and in vivo studies underscoring the antioxidant activity of pristine and doped carbon dots. Among all studies, the hydrothermal method was observed to be a popular synthesis approach. Out of 87 studies, 38 exclusively assessed the 2,2-diphenyl-1-picrylhydrazyl-scavenging properties of pristine and doped carbon dots with half-maximum effective concentration values ranging from 2.7 to 524 μg mL<sup>−1</sup>. The subsequent studies recorded the scavenging of other radicals alongside 2,2-diphenyl-1-picrylhydrazyl, with 18, 14, 10, 5, and 2 studies demonstrating the scavenging efficacy of carbon dots for hydroxyl, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), superoxide, hydrogen peroxide, and nitric oxide radicals, respectively. Furthermore, 18 studies reported the antioxidant property of carbon dots in cell, animal, and vertebrate models by modulating oxidative stress markers and upregulating the expressions of various antioxidant enzymes. The review also highlights the prooxidant nature of green carbon dots briefly. Finally, the paper delves into the practical applications of carbon dots in the food, agricultural, and environmental sectors.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"58 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Chemistry Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1