首页 > 最新文献

Environmental Chemistry Letters最新文献

英文 中文
Hydrovoltaic technologies for self-powered sensing and pollutant removal in water and wastewater: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-22 DOI: 10.1007/s10311-025-01836-5
Shipu Jiao, Yushi Jin, Eric Lichtfouse, Xiaohong Zhou

Carbon emissions from the water and wastewater treatment sector account for about 2% of global carbon emissions, calling for the integration of sustainable energies to decrease carbon footprints. Here we review the use of hydrovoltaic technologies in water and wastewater treatment, with emphasis on the hydrovoltaic effect, self-powered sensors, and pollutant removal. The hydrovoltaic effect can be obtained using moisture-induced hydrovoltaic generators and water evaporation-induced hydrovoltaic generators. Strain, pressure, humidity, gas, and liquid sensors can be powered by hydrovoltaic generators. Remarkably, the hydrovoltaic technology-driven liquid sensors can reach a detection limit of 1 femtomolar. The hydrovoltaic technology reduces pollution in two ways, first by generating electricity from environmental moisture and evaporation, thereby reducing fossil fuel dependency. Second, it takes advantage of the photocatalytic properties of materials to decompose organic matter during water treatment, thus minimizing the usage of chemical reagents. Applications comprise wastewater power generation, seawater desalination and organic matter degradation.

{"title":"Hydrovoltaic technologies for self-powered sensing and pollutant removal in water and wastewater: a review","authors":"Shipu Jiao, Yushi Jin, Eric Lichtfouse, Xiaohong Zhou","doi":"10.1007/s10311-025-01836-5","DOIUrl":"https://doi.org/10.1007/s10311-025-01836-5","url":null,"abstract":"<p>Carbon emissions from the water and wastewater treatment sector account for about 2% of global carbon emissions, calling for the integration of sustainable energies to decrease carbon footprints. Here we review the use of hydrovoltaic technologies in water and wastewater treatment, with emphasis on the hydrovoltaic effect, self-powered sensors, and pollutant removal. The hydrovoltaic effect can be obtained using moisture-induced hydrovoltaic generators and water evaporation-induced hydrovoltaic generators. Strain, pressure, humidity, gas, and liquid sensors can be powered by hydrovoltaic generators. Remarkably, the hydrovoltaic technology-driven liquid sensors can reach a detection limit of 1 femtomolar. The hydrovoltaic technology reduces pollution in two ways, first by generating electricity from environmental moisture and evaporation, thereby reducing fossil fuel dependency. Second, it takes advantage of the photocatalytic properties of materials to decompose organic matter during water treatment, thus minimizing the usage of chemical reagents. Applications comprise wastewater power generation, seawater desalination and organic matter degradation.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"18 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143672777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The antioxidant properties of green carbon dots: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-21 DOI: 10.1007/s10311-025-01831-w
Neha Sharma, Anshul Sharma, Hae-Jeung Lee

The generation of reactive species and their derivatives, whether in the human body or in the food systems, contributes to various human diseases and compromises food quality. Unfortunately, both natural and synthetic antioxidants have specific limitations. Green chemistry-derived carbon dots offer a promising solution in this regard. Here we review the antioxidant activity of green synthesized carbon dots. The review commences with an overview of carbon dots, their properties, and the top-down and bottom-up synthesis approaches, along with their merits and drawbacks. Furthermore, the importance of the green chemistry concept is highlighted. The role of different functional groups in carbon dots attributed to their antioxidant activity is emphasized. Subsequently, the review elucidates several methods commonly utilized to evaluate the antioxidant activity of carbon dots together with a discussion on various oxidative and non-oxidative stress markers. The review compiles a variety of ex vivo, in vitro, and in vivo studies underscoring the antioxidant activity of pristine and doped carbon dots. Among all studies, the hydrothermal method was observed to be a popular synthesis approach. Out of 87 studies, 38 exclusively assessed the 2,2-diphenyl-1-picrylhydrazyl-scavenging properties of pristine and doped carbon dots with half-maximum effective concentration values ranging from 2.7 to 524 μg mL−1. The subsequent studies recorded the scavenging of other radicals alongside 2,2-diphenyl-1-picrylhydrazyl, with 18, 14, 10, 5, and 2 studies demonstrating the scavenging efficacy of carbon dots for hydroxyl, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), superoxide, hydrogen peroxide, and nitric oxide radicals, respectively. Furthermore, 18 studies reported the antioxidant property of carbon dots in cell, animal, and vertebrate models by modulating oxidative stress markers and upregulating the expressions of various antioxidant enzymes. The review also highlights the prooxidant nature of green carbon dots briefly. Finally, the paper delves into the practical applications of carbon dots in the food, agricultural, and environmental sectors.

{"title":"The antioxidant properties of green carbon dots: a review","authors":"Neha Sharma, Anshul Sharma, Hae-Jeung Lee","doi":"10.1007/s10311-025-01831-w","DOIUrl":"https://doi.org/10.1007/s10311-025-01831-w","url":null,"abstract":"<p>The generation of reactive species and their derivatives, whether in the human body or in the food systems, contributes to various human diseases and compromises food quality. Unfortunately, both natural and synthetic antioxidants have specific limitations. Green chemistry-derived carbon dots offer a promising solution in this regard. Here we review the antioxidant activity of green synthesized carbon dots. The review commences with an overview of carbon dots, their properties, and the top-down and bottom-up synthesis approaches, along with their merits and drawbacks. Furthermore, the importance of the green chemistry concept is highlighted. The role of different functional groups in carbon dots attributed to their antioxidant activity is emphasized. Subsequently, the review elucidates several methods commonly utilized to evaluate the antioxidant activity of carbon dots together with a discussion on various oxidative and non-oxidative stress markers. The review compiles a variety of ex vivo, in vitro, and in vivo studies underscoring the antioxidant activity of pristine and doped carbon dots. Among all studies, the hydrothermal method was observed to be a popular synthesis approach. Out of 87 studies, 38 exclusively assessed the 2,2-diphenyl-1-picrylhydrazyl-scavenging properties of pristine and doped carbon dots with half-maximum effective concentration values ranging from 2.7 to 524 μg mL<sup>−1</sup>. The subsequent studies recorded the scavenging of other radicals alongside 2,2-diphenyl-1-picrylhydrazyl, with 18, 14, 10, 5, and 2 studies demonstrating the scavenging efficacy of carbon dots for hydroxyl, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), superoxide, hydrogen peroxide, and nitric oxide radicals, respectively. Furthermore, 18 studies reported the antioxidant property of carbon dots in cell, animal, and vertebrate models by modulating oxidative stress markers and upregulating the expressions of various antioxidant enzymes. The review also highlights the prooxidant nature of green carbon dots briefly. Finally, the paper delves into the practical applications of carbon dots in the food, agricultural, and environmental sectors.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"58 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microplastic mitigation in urban stormwater using green infrastructure: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-21 DOI: 10.1007/s10311-025-01833-8
Tauseef Ahmad, Sumaira Gul, Licheng Peng, Tariq Mehmood, Qing Huang, Ashfaq Ahmad, Hazrat Ali, Wajid Ali, Sami Souissi, Philippe Zinck

Microplastic pollution in aquatic environments has emerged as a significant environmental concern, posing risks to ecosystems and human health. Urban stormwater runoff has been identified as a major source of microplastics, with microplastic concentrations reaching up to six times higher than those in wastewater treatment plant effluents. Given the increasing urbanization and inadequate waste management, effective mitigation strategies are urgently needed to prevent the discharge of microplastics into natural water systems. Green infrastructure, designed for sustainable stormwater management, has gained attention as a promising approach to reducing microplastic pollution while providing additional environmental benefits. Here, we review various green infrastructure technologies, including bioretention systems, permeable pavements, stormwater ponds, and constructed wetlands, focusing on their effectiveness in microplastic mitigation. Bioretention systems exhibit removal efficiencies ranging from 80% to over 99%, and are particularly effective for particles sized 20 μm or above. Constructed wetlands achieve removal rates between 28 and 75%, effectively treating microplastics in the 100–500 μm range. Permeable pavements demonstrate removal efficiencies of 89–96.6%, especially for particles less than 100 μm. Retention ponds retain 55–98% of microplastics, with sediment retention reaching up to 85%. We found that the performance of these systems is influenced by soil amendments, vegetation, and adsorption-based mechanisms such as biochar applications, which can enhance removal to over 99% under optimized conditions. Phytoremediation with aquatic plants such as Lemna minor achieves a 76% removal rate, while biofilm-based strategies offer slower but potentially sustainable solutions. This review highlights the necessity of integrating multiple green infrastructure approaches to optimize microplastic removal.

{"title":"Microplastic mitigation in urban stormwater using green infrastructure: a review","authors":"Tauseef Ahmad, Sumaira Gul, Licheng Peng, Tariq Mehmood, Qing Huang, Ashfaq Ahmad, Hazrat Ali, Wajid Ali, Sami Souissi, Philippe Zinck","doi":"10.1007/s10311-025-01833-8","DOIUrl":"https://doi.org/10.1007/s10311-025-01833-8","url":null,"abstract":"<p>Microplastic pollution in aquatic environments has emerged as a significant environmental concern, posing risks to ecosystems and human health. Urban stormwater runoff has been identified as a major source of microplastics, with microplastic concentrations reaching up to six times higher than those in wastewater treatment plant effluents. Given the increasing urbanization and inadequate waste management, effective mitigation strategies are urgently needed to prevent the discharge of microplastics into natural water systems. Green infrastructure, designed for sustainable stormwater management, has gained attention as a promising approach to reducing microplastic pollution while providing additional environmental benefits. Here, we review various green infrastructure technologies, including bioretention systems, permeable pavements, stormwater ponds, and constructed wetlands, focusing on their effectiveness in microplastic mitigation. Bioretention systems exhibit removal efficiencies ranging from 80% to over 99%, and are particularly effective for particles sized 20 μm or above. Constructed wetlands achieve removal rates between 28 and 75%, effectively treating microplastics in the 100–500 μm range. Permeable pavements demonstrate removal efficiencies of 89–96.6%, especially for particles less than 100 μm. Retention ponds retain 55–98% of microplastics, with sediment retention reaching up to 85%. We found that the performance of these systems is influenced by soil amendments, vegetation, and adsorption-based mechanisms such as biochar applications, which can enhance removal to over 99% under optimized conditions. Phytoremediation with aquatic plants such as <i>Lemna minor</i> achieves a 76% removal rate, while biofilm-based strategies offer slower but potentially sustainable solutions. This review highlights the necessity of integrating multiple green infrastructure approaches to optimize microplastic removal.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"103 1 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143666313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence for calculating and predicting building carbon emissions: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-21 DOI: 10.1007/s10311-024-01799-z
Jianmin Hua, Ruiyi Wang, Ying Hu, Zimeng Chen, Lin Chen, Ahmed I. Osman, Mohamed Farghali, Lepeng Huang, Ji Feng, Jun Wang, Xiang Zhang, Xingyang Zhou, Pow-Seng Yap

The construction industry, being responsible for a large share of global carbon emissions, needs to reduce its high carbon output to meet carbon reduction goals. Artificial intelligence can provide efficient support for carbon emission calculation and prediction. Here, we review the use of artificial intelligence techniques in forecasting, management and real-time monitoring of carbon emissions, focusing on how they are applied, their impacts, and challenges. Compared to traditional methods, the prediction accuracy of artificial intelligence models has increased by 20%. Artificial intelligence-driven systems could reduce carbon emissions by up to 15% through real-time monitoring and adaptive management strategies. Artificial intelligence applications improve energy efficiency in buildings by up to 25%, while reducing operational costs by up to 10%. Artificial intelligence supports the establishment of a digital carbon management system and contributes to the development of the carbon trading market.

{"title":"Artificial intelligence for calculating and predicting building carbon emissions: a review","authors":"Jianmin Hua, Ruiyi Wang, Ying Hu, Zimeng Chen, Lin Chen, Ahmed I. Osman, Mohamed Farghali, Lepeng Huang, Ji Feng, Jun Wang, Xiang Zhang, Xingyang Zhou, Pow-Seng Yap","doi":"10.1007/s10311-024-01799-z","DOIUrl":"https://doi.org/10.1007/s10311-024-01799-z","url":null,"abstract":"<p>The construction industry, being responsible for a large share of global carbon emissions, needs to reduce its high carbon output to meet carbon reduction goals. Artificial intelligence can provide efficient support for carbon emission calculation and prediction. Here, we review the use of artificial intelligence techniques in forecasting, management and real-time monitoring of carbon emissions, focusing on how they are applied, their impacts, and challenges. Compared to traditional methods, the prediction accuracy of artificial intelligence models has increased by 20%. Artificial intelligence-driven systems could reduce carbon emissions by up to 15% through real-time monitoring and adaptive management strategies. Artificial intelligence applications improve energy efficiency in buildings by up to 25%, while reducing operational costs by up to 10%. Artificial intelligence supports the establishment of a digital carbon management system and contributes to the development of the carbon trading market.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limited efficiency of wet scrubbers in reducing the environmental impact of ship-emitted particles
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-17 DOI: 10.1007/s10311-025-01830-x
Lukas Anders, Martin Bauer, Seongho Jeong, Marco Schmidt, Haseeb Hakkim, Aleksandrs Kalamašņikovs, Ellen Iva Rosewig, Julian Schade, Robert Irsig, Sven Ehlert, Jan Bendl, Mohammad Reza Saraji-Bozorgzad, Barbara Giocastro, Uwe Käfer, Uwe Etzien, Bert Buchholz, Thomas Adam, Martin Sklorz, Thorsten Streibel, Hendryk Czech, Johannes Passig, Ralf Zimmermann

Sulfur dioxide pollution by ship emissions can be efficiently decreased by using exhaust gas scrubbers, yet particles can pass through the scrubber and be released into the atmosphere. Here, we studied the impact of using a wet scrubber on the composition of particle emissions, by single-particle analysis. At low engine loads, results show no significant changes in particle composition of metals, salts, and polycyclic aromatic hydrocarbons (PAH). At high engine loads, the scrubber reduced soot and PAH signatures about fourfold. Particles passing through the scrubber undergo minimal chemical changes, except for sulfate uptake. The cleaning effect of wet scrubbers is attributed to the removal of water-soluble gas-phase compounds, diffusion-dominated uptake of ultrafine particles, and wet deposition of coarse particles. The scrubber has little effect on reducing the health and environmental impacts of the remaining particles that pass through it. These emitted particles, primarily in the 60–200 nm size range, constitute a significant portion of the inhalable particle mass and have the potential for long-range transport.

使用废气洗涤器可以有效减少船舶排放的二氧化硫污染,但颗粒物会穿过洗涤器释放到大气中。在这里,我们通过单颗粒分析研究了使用湿式洗涤器对颗粒排放成分的影响。结果显示,在发动机低负荷时,颗粒中的金属、盐类和多环芳烃(PAH)成分没有明显变化。在发动机负荷较高时,洗涤器将烟尘和多环芳烃的特征降低了约四倍。除硫酸盐吸收外,通过洗涤器的颗粒发生的化学变化极小。湿式洗涤器的清洁效果归因于水溶性气相化合物的去除、超细颗粒的扩散吸收和粗颗粒的湿沉积。洗涤器对减少通过它的其余颗粒对健康和环境的影响作用不大。这些排放的颗粒主要在 60-200 纳米大小范围内,占可吸入颗粒质量的很大一部分,并有可能进行长程飘移。
{"title":"Limited efficiency of wet scrubbers in reducing the environmental impact of ship-emitted particles","authors":"Lukas Anders, Martin Bauer, Seongho Jeong, Marco Schmidt, Haseeb Hakkim, Aleksandrs Kalamašņikovs, Ellen Iva Rosewig, Julian Schade, Robert Irsig, Sven Ehlert, Jan Bendl, Mohammad Reza Saraji-Bozorgzad, Barbara Giocastro, Uwe Käfer, Uwe Etzien, Bert Buchholz, Thomas Adam, Martin Sklorz, Thorsten Streibel, Hendryk Czech, Johannes Passig, Ralf Zimmermann","doi":"10.1007/s10311-025-01830-x","DOIUrl":"https://doi.org/10.1007/s10311-025-01830-x","url":null,"abstract":"<p>Sulfur dioxide pollution by ship emissions can be efficiently decreased by using exhaust gas scrubbers, yet particles can pass through the scrubber and be released into the atmosphere. Here, we studied the impact of using a wet scrubber on the composition of particle emissions, by single-particle analysis. At low engine loads, results show no significant changes in particle composition of metals, salts, and polycyclic aromatic hydrocarbons (PAH). At high engine loads, the scrubber reduced soot and PAH signatures about fourfold. Particles passing through the scrubber undergo minimal chemical changes, except for sulfate uptake. The cleaning effect of wet scrubbers is attributed to the removal of water-soluble gas-phase compounds, diffusion-dominated uptake of ultrafine particles, and wet deposition of coarse particles. The scrubber has little effect on reducing the health and environmental impacts of the remaining particles that pass through it. These emitted particles, primarily in the 60–200 nm size range, constitute a significant portion of the inhalable particle mass and have the potential for long-range transport.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"183 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-adhesion lignin bonding for the production of particleboards from low-grade wood
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-14 DOI: 10.1007/s10311-025-01835-6
Zhenggang Gong, Guangxu Yang, Liang Chen, Li Shuai

Classical production of construction particleboards with high-grade wood and formaldehyde-based binders induces forest depletion and pollution, calling for alternatives. Here, we designed in situ lignin bonding to transform low-grade woods into high-performance and formaldehyde-free particleboards. This method involves the deconstruction of fine wood particles to soften cell walls, eliminating undesirable water-soluble components while preserving lignin, followed by a thermo-compression molding procedure to facilitate the formation of a compact and cross-linked structure within softened wood particles. Results show that particleboard displays high mechanical strength with a rupture modulus of 66.7 MPa and excellent water resistance with a thickness swelling of 2.1%. The performance of particleboards is enhanced by low wood hardness, small particle size, removal of water-soluble fractions, and preservation of lignin. The self-adhesion technique is straightforward, practical, and scalable.

{"title":"Self-adhesion lignin bonding for the production of particleboards from low-grade wood","authors":"Zhenggang Gong, Guangxu Yang, Liang Chen, Li Shuai","doi":"10.1007/s10311-025-01835-6","DOIUrl":"https://doi.org/10.1007/s10311-025-01835-6","url":null,"abstract":"<p>Classical production of construction particleboards with high-grade wood and formaldehyde-based binders induces forest depletion and pollution, calling for alternatives. Here, we designed in situ lignin bonding to transform low-grade woods into high-performance and formaldehyde-free particleboards. This method involves the deconstruction of fine wood particles to soften cell walls, eliminating undesirable water-soluble components while preserving lignin, followed by a thermo-compression molding procedure to facilitate the formation of a compact and cross-linked structure within softened wood particles. Results show that particleboard displays high mechanical strength with a rupture modulus of 66.7 MPa and excellent water resistance with a thickness swelling of 2.1%. The performance of particleboards is enhanced by low wood hardness, small particle size, removal of water-soluble fractions, and preservation of lignin. The self-adhesion technique is straightforward, practical, and scalable.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"16 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143618343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long‑term exposure of polyethylene nanoplastics promotes colorectal tumorigenesis
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.1007/s10311-025-01829-4
Huan Xiong, Zhipeng He, Jing Ding, Jing Liu, Yue Xue, Min Ji, Na Hu, Kai Wu, Xi Deng, Zhaoxiao Liu, Tao Luo, Xiaorong Deng

Nanoplastics are emerging contaminants which can induce intestinal inflammation and dysfunction, yet their possible influence on colorectal tumorigenesis remains unclear. Here, six‑week‑old male mice were exposed to 125 mg/L 80 nm polyethylene nanoplastics, polyethylene nanoplastic/azoxymethane, polyethylene nanoplastics/azoxymethane/dextran sulfate sodium, and controls for 66 days. We assessed intestinal symptoms, colorectal tumorigenesis, and pathological, ultrastructural and molecular changes. Results show more colon tumors, of 18.3 versus 13.5, and heavier tumor burdens, of 113.1 versus 67.7 mm2 in the mice treated with nanoplastics/azoxymethane/dextran sulfate sodium. Similarly, there were more colon tumors, of 6.0 versus 2.2, and heavier tumor burdens, of 26.0 versus 7.0 mm2 in mice treated with nanoplastics/azoxymethane. Mice treated with nanoplastics alone developed colorectal neoplasms, of 2.9, with tumor burdens of 10.6 mm2 and a pathology of polyp. Exposure to nanoplastics promoted tumor‑associated macrophages infiltration; disrupted microvilli, intercellular junctions, and the mitochondrial structures of colonic epithelium; and activated inflammation‑associated signaling pathways. Overall, the exposure to polyethylene nanoplastics facilitates the initiation and promotion of colorectal tumorigenesis, possibly by affecting mitochondrial structure and aggravating chronic colitis.

{"title":"Long‑term exposure of polyethylene nanoplastics promotes colorectal tumorigenesis","authors":"Huan Xiong, Zhipeng He, Jing Ding, Jing Liu, Yue Xue, Min Ji, Na Hu, Kai Wu, Xi Deng, Zhaoxiao Liu, Tao Luo, Xiaorong Deng","doi":"10.1007/s10311-025-01829-4","DOIUrl":"https://doi.org/10.1007/s10311-025-01829-4","url":null,"abstract":"<p>Nanoplastics are emerging contaminants which can induce intestinal inflammation and dysfunction, yet their possible influence on colorectal tumorigenesis remains unclear. Here, six‑week‑old male mice were exposed to 125 mg/L 80 nm polyethylene nanoplastics, polyethylene nanoplastic/azoxymethane, polyethylene nanoplastics/azoxymethane/dextran sulfate sodium, and controls for 66 days. We assessed intestinal symptoms, colorectal tumorigenesis, and pathological, ultrastructural and molecular changes. Results show more colon tumors, of 18.3 versus 13.5, and heavier tumor burdens, of 113.1 versus 67.7 mm<sup>2</sup> in the mice treated with nanoplastics/azoxymethane/dextran sulfate sodium. Similarly, there were more colon tumors, of 6.0 versus 2.2, and heavier tumor burdens, of 26.0 versus 7.0 mm<sup>2</sup> in mice treated with nanoplastics/azoxymethane. Mice treated with nanoplastics alone developed colorectal neoplasms, of 2.9, with tumor burdens of 10.6 mm<sup>2</sup> and a pathology of polyp. Exposure to nanoplastics promoted tumor‑associated macrophages infiltration; disrupted microvilli, intercellular junctions, and the mitochondrial structures of colonic epithelium; and activated inflammation‑associated signaling pathways. Overall, the exposure to polyethylene nanoplastics facilitates the initiation and promotion of colorectal tumorigenesis, possibly by affecting mitochondrial structure and aggravating chronic colitis.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"16 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dose-dependent inflammatory and neurotoxic effects of polypropylene microplastics in Nile tilapia evidenced by internal extractive electrospray ionization high-resolution mass spectrometry metabolomics
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-05 DOI: 10.1007/s10311-025-01832-9
Xiaokang Wu, Susu Pan, Ming Li, Jiaxin Dong, Yining Wang, Chenni Huang, Tao Qiu, Yu Gu, Dapeng Liang

Polypropylene is widely used in textiles, injection molding, and film production, yet the metabolic toxicity of polypropylene microplastics is poorly known due to the limitations of analytical techniques. Here, we used internal extractive electrospray ionization coupled with high-resolution mass spectrometry and non-targeted metabolomics analysis to investigate the impact of polypropylene micro- and nanoplastics sizes and doses on metabolic dysregulation in Nile tilapia organs and tissues. Results show an upregulation of inflammatory mediators, including arachidonic acid and its derivatives, which affect critical metabolic pathways such as glycerophospholipid, arachidonic acid, and sphingolipid metabolisms. The inflammatory and neurotoxic effects exhibited a dose-dependent relationship.

{"title":"Dose-dependent inflammatory and neurotoxic effects of polypropylene microplastics in Nile tilapia evidenced by internal extractive electrospray ionization high-resolution mass spectrometry metabolomics","authors":"Xiaokang Wu, Susu Pan, Ming Li, Jiaxin Dong, Yining Wang, Chenni Huang, Tao Qiu, Yu Gu, Dapeng Liang","doi":"10.1007/s10311-025-01832-9","DOIUrl":"https://doi.org/10.1007/s10311-025-01832-9","url":null,"abstract":"<p>Polypropylene is widely used in textiles, injection molding, and film production, yet the metabolic toxicity of polypropylene microplastics is poorly known due to the limitations of analytical techniques. Here, we used internal extractive electrospray ionization coupled with high-resolution mass spectrometry and non-targeted metabolomics analysis to investigate the impact of polypropylene micro- and nanoplastics sizes and doses on metabolic dysregulation in <i>Nile tilapia</i> organs and tissues. Results show an upregulation of inflammatory mediators, including arachidonic acid and its derivatives, which affect critical metabolic pathways such as glycerophospholipid, arachidonic acid, and sphingolipid metabolisms. The inflammatory and neurotoxic effects exhibited a dose-dependent relationship.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"11 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutral pH, multioxidants Fenton oxidation of dimethyl sulfoxide and acetamidophenol as water pollutant models
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-01 DOI: 10.1007/s10311-025-01828-5
Aswin Kottapurath Vijay, Gifty Sara Rolly, Vered Marks, Virender K. Sharma, Dan Meyerstein

Organic water pollution is calling for advanced remediation methods such as the Fenton process, yet actual procedures involve transition metals at acidic pH, and generate only one oxidant, the hydroxyl radical. Here we used a solution of magnesium ions, bicarbonate ions, and hydrogen peroxide at pH 7.4 to generate reactive oxygen species for degrading dimethyl sulfoxide and acetamidophenol, as models of water pollutants. The performance and the identification of degradation products were assessed by nuclear magnetic resonance and high-performance liquid chromatography. Results show the generation of several oxidizing agents such as hydroxyl radical, carbonate anion radical, and superoxide. The novel aspect is that the Fenton-like process can be achieved with Mg2⁺ serving only as a template to facilitate redox reactions rather than participating directly. The mechanisms for generating oxidizing radicals suggests potential applications in both environmental cleanup and biological processes.

{"title":"Neutral pH, multioxidants Fenton oxidation of dimethyl sulfoxide and acetamidophenol as water pollutant models","authors":"Aswin Kottapurath Vijay, Gifty Sara Rolly, Vered Marks, Virender K. Sharma, Dan Meyerstein","doi":"10.1007/s10311-025-01828-5","DOIUrl":"https://doi.org/10.1007/s10311-025-01828-5","url":null,"abstract":"<p>Organic water pollution is calling for advanced remediation methods such as the Fenton process, yet actual procedures involve transition metals at acidic pH, and generate only one oxidant, the hydroxyl radical. Here we used a solution of magnesium ions, bicarbonate ions, and hydrogen peroxide at pH 7.4 to generate reactive oxygen species for degrading dimethyl sulfoxide and acetamidophenol, as models of water pollutants. The performance and the identification of degradation products were assessed by nuclear magnetic resonance and high-performance liquid chromatography. Results show the generation of several oxidizing agents such as hydroxyl radical, carbonate anion radical, and superoxide. The novel aspect is that the Fenton-like process can be achieved with Mg<sup>2</sup>⁺ serving only as a template to facilitate redox reactions rather than participating directly. The mechanisms for generating oxidizing radicals suggests potential applications in both environmental cleanup and biological processes.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"139 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143526440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmentally-friendly tanning for leather production: a review
IF 15.7 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-25 DOI: 10.1007/s10311-025-01827-6
Wei Ding, Javier Remón, Zhicheng Jiang

Traditional industrial methods of the leather industry produce toxic chromium-containing wastewater and solid wastes, calling for alternative procedures. Here, we review greener technologies to produce leather with focus on principles to design materials, high-efficiency chrome tanning, chrome-free processes, e.g., organic tanning, combination tanning, nanomaterial-based tanning, and tanning agent-free technology, as well as high-performance post-tanning using multifunctional polymers, integrated tanning-dyeing systems, and socioeconomical aspects. High-efficiency chrome tanning is done by high-exhaustion chrome tanning or inverse chrome tanning, which reduce the usage of chrome. Organic tanning employs biomass-derived and polymeric tanning agents.

{"title":"Environmentally-friendly tanning for leather production: a review","authors":"Wei Ding, Javier Remón, Zhicheng Jiang","doi":"10.1007/s10311-025-01827-6","DOIUrl":"https://doi.org/10.1007/s10311-025-01827-6","url":null,"abstract":"<p>Traditional industrial methods of the leather industry produce toxic chromium-containing wastewater and solid wastes, calling for alternative procedures. Here, we review greener technologies to produce leather with focus on principles to design materials, high-efficiency chrome tanning, chrome-free processes, e.g., organic tanning, combination tanning, nanomaterial-based tanning, and tanning agent-free technology, as well as high-performance post-tanning using multifunctional polymers, integrated tanning-dyeing systems, and socioeconomical aspects. High-efficiency chrome tanning is done by high-exhaustion chrome tanning or inverse chrome tanning, which reduce the usage of chrome. Organic tanning employs biomass-derived and polymeric tanning agents.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"15 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143486234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Chemistry Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1