Ryan Faulkenberry, Saurabh Prasad, Dragan Maric, Badrinath Roysam
{"title":"Visual Prompting Based Incremental Learning for Semantic Segmentation of Multiplex Immuno-Flourescence Microscopy Imagery.","authors":"Ryan Faulkenberry, Saurabh Prasad, Dragan Maric, Badrinath Roysam","doi":"10.1007/s12021-024-09651-z","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning approaches are state-of-the-art for semantic segmentation of medical images, but unlike many deep learning applications, medical segmentation is characterized by small amounts of annotated training data. Thus, while mainstream deep learning approaches focus on performance in domains with large training sets, researchers in the medical imaging field must apply new methods in creative ways to meet the more constrained requirements of medical datasets. We propose a framework for incrementally fine-tuning a multi-class segmentation of a high-resolution multiplex (multi-channel) immuno-flourescence image of a rat brain section, using a minimal amount of labelling from a human expert. Our framework begins with a modified Swin-UNet architecture that treats each biomarker in the multiplex image separately and learns an initial \"global\" segmentation (pre-training). This is followed by incremental learning and refinement of each class using a very limited amount of additional labeled data provided by a human expert for each region and its surroundings. This incremental learning utilizes the multi-class weights as an initialization and uses the additional labels to steer the network and optimize it for each region in the image. In this way, an expert can identify errors in the multi-class segmentation and rapidly correct them by supplying the model with additional annotations hand-picked from the region. In addition to increasing the speed of annotation and reducing the amount of labelling, we show that our proposed method outperforms a traditional multi-class segmentation by a large margin.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"147-162"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09651-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning approaches are state-of-the-art for semantic segmentation of medical images, but unlike many deep learning applications, medical segmentation is characterized by small amounts of annotated training data. Thus, while mainstream deep learning approaches focus on performance in domains with large training sets, researchers in the medical imaging field must apply new methods in creative ways to meet the more constrained requirements of medical datasets. We propose a framework for incrementally fine-tuning a multi-class segmentation of a high-resolution multiplex (multi-channel) immuno-flourescence image of a rat brain section, using a minimal amount of labelling from a human expert. Our framework begins with a modified Swin-UNet architecture that treats each biomarker in the multiplex image separately and learns an initial "global" segmentation (pre-training). This is followed by incremental learning and refinement of each class using a very limited amount of additional labeled data provided by a human expert for each region and its surroundings. This incremental learning utilizes the multi-class weights as an initialization and uses the additional labels to steer the network and optimize it for each region in the image. In this way, an expert can identify errors in the multi-class segmentation and rapidly correct them by supplying the model with additional annotations hand-picked from the region. In addition to increasing the speed of annotation and reducing the amount of labelling, we show that our proposed method outperforms a traditional multi-class segmentation by a large margin.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.