Wang Ying, Cai Chunjing, Lu Junhua, Li Xuan, Wang Zhaojiang, Chu Jie
{"title":"Efficient crop straws biotreatment using the fungus Cerrena Unicolor GC.u01.","authors":"Wang Ying, Cai Chunjing, Lu Junhua, Li Xuan, Wang Zhaojiang, Chu Jie","doi":"10.1186/s13568-024-01668-6","DOIUrl":null,"url":null,"abstract":"<p><p>Lignin is main composition of agricultural biomass which can be decomposed through enzymatic hydrolysis by fungi. However, there are still needs to identify more efficient and effective fungal stain for biomass valorization. In this study, lignin degrading fungi from birch forest were screened for sustainable degradation of waste agricultural straws. The most effective strain was identified as Cerrena unicolor GC.u01 using 18 S rDNA gene-sequencing technology. Three different crop straws (corn stalk, rice and wheat straws) were used for the biotreatment studies. The activities of lignin degrading enzymes, laccase (Lac), cellulase and xylanase, secreted by C. unicolor were also determined. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analyzer (TGA) were further used to monitor the effects of the biotreatment process. The results showed that C. unicolor degraded 34.3% rice straw lignin, a percentage which was higher than other isolated strains after 15 d straw liquid fermentation. The highest Lac activity (8.396 U•mL<sup>- 1</sup>) was observed with corn stalk on the 7 d. Cellulase and xylanase activities, in the same biomass, were higher than those of wheat and rice straws after 15 d. Furthermore, SEM, FTIR and TGA analyses showed that C. unicolor pretreatment process had significant effects on corn stalk, rice and wheat straws' structures. The newly isolated stain of C. unicolor demonstrated high lignin degradation potential that can provide effective, ecofriendly means of valorizing biomass to industrial useable raw-material.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"28"},"PeriodicalIF":3.5000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01668-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lignin is main composition of agricultural biomass which can be decomposed through enzymatic hydrolysis by fungi. However, there are still needs to identify more efficient and effective fungal stain for biomass valorization. In this study, lignin degrading fungi from birch forest were screened for sustainable degradation of waste agricultural straws. The most effective strain was identified as Cerrena unicolor GC.u01 using 18 S rDNA gene-sequencing technology. Three different crop straws (corn stalk, rice and wheat straws) were used for the biotreatment studies. The activities of lignin degrading enzymes, laccase (Lac), cellulase and xylanase, secreted by C. unicolor were also determined. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analyzer (TGA) were further used to monitor the effects of the biotreatment process. The results showed that C. unicolor degraded 34.3% rice straw lignin, a percentage which was higher than other isolated strains after 15 d straw liquid fermentation. The highest Lac activity (8.396 U•mL- 1) was observed with corn stalk on the 7 d. Cellulase and xylanase activities, in the same biomass, were higher than those of wheat and rice straws after 15 d. Furthermore, SEM, FTIR and TGA analyses showed that C. unicolor pretreatment process had significant effects on corn stalk, rice and wheat straws' structures. The newly isolated stain of C. unicolor demonstrated high lignin degradation potential that can provide effective, ecofriendly means of valorizing biomass to industrial useable raw-material.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.