Assessing the Genetic Diversity of Parents for Developing Hybrids Through Morphological and Molecular Markers in Rice (Oryza sativa L.).

IF 4.8 1区 农林科学 Q1 AGRONOMY Rice Pub Date : 2024-02-24 DOI:10.1186/s12284-024-00691-2
Rakkimuthu Nivedha, Swaminathan Manonmani, Thiyagarajan Kalaimagal, Muthurajan Raveendran, Shanmugam Kavitha
{"title":"Assessing the Genetic Diversity of Parents for Developing Hybrids Through Morphological and Molecular Markers in Rice (Oryza sativa L.).","authors":"Rakkimuthu Nivedha, Swaminathan Manonmani, Thiyagarajan Kalaimagal, Muthurajan Raveendran, Shanmugam Kavitha","doi":"10.1186/s12284-024-00691-2","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of hybrid technology plays a crucial role in addressing yield plateau and diminishing resources in rice cultivating regions. The knowledge of genetic diversity among parental lines is a prerequisite for effective hybrid breeding program. In the current study, a set of 66 parental lines was studied for diversity based on both morphological characters and microsatellite SSR markers. The genetic variability parameters unveiled that number of productive tillers per plant, single plant yield and hundred grain weight exhibited additive gene action. Mahalanobis D<sup>2</sup> statistics grouped the genotypes into ten clusters based on yield and grain traits. The principal component analysis identified four PCs with eigen value more than one accounting for 71.28% of cumulative variance. The polymorphic SSR markers produced 122 alleles among which the marker RM474 recorded the highest values for Polymorphic Information Content (0.83) and heterozygosity index (0.85). The genotypes were assembled in seven clusters based on jaccard distances using the Unweighted Pair Group method with Arithmetic Mean (UPGMA). The population structure divided the entire population into 3 subpopulations. In both clustering, there was difference in the assembling of genotypes, but, good performing genotypes identified through PCA were positioned in different clusters in both approaches. The genotypes CBSN 495 and CBSN 494 located in different clusters were identified as the potential restorers for high yielding and short duration hybrids. The hybridization among CRR Dhan 310, CRR Dhan 315, IR64 DRT, CB 17135 and WGL 347 can be performed to develop climate smart varieties with improved nutrition.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"17"},"PeriodicalIF":4.8000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-024-00691-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of hybrid technology plays a crucial role in addressing yield plateau and diminishing resources in rice cultivating regions. The knowledge of genetic diversity among parental lines is a prerequisite for effective hybrid breeding program. In the current study, a set of 66 parental lines was studied for diversity based on both morphological characters and microsatellite SSR markers. The genetic variability parameters unveiled that number of productive tillers per plant, single plant yield and hundred grain weight exhibited additive gene action. Mahalanobis D2 statistics grouped the genotypes into ten clusters based on yield and grain traits. The principal component analysis identified four PCs with eigen value more than one accounting for 71.28% of cumulative variance. The polymorphic SSR markers produced 122 alleles among which the marker RM474 recorded the highest values for Polymorphic Information Content (0.83) and heterozygosity index (0.85). The genotypes were assembled in seven clusters based on jaccard distances using the Unweighted Pair Group method with Arithmetic Mean (UPGMA). The population structure divided the entire population into 3 subpopulations. In both clustering, there was difference in the assembling of genotypes, but, good performing genotypes identified through PCA were positioned in different clusters in both approaches. The genotypes CBSN 495 and CBSN 494 located in different clusters were identified as the potential restorers for high yielding and short duration hybrids. The hybridization among CRR Dhan 310, CRR Dhan 315, IR64 DRT, CB 17135 and WGL 347 can be performed to develop climate smart varieties with improved nutrition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过水稻(Oryza sativa L.)的形态学和分子标记评估用于培育杂交种的亲本遗传多样性。
杂交技术的进步在解决水稻种植区产量高原化和资源减少的问题上发挥着至关重要的作用。了解亲本间的遗传多样性是有效开展杂交育种计划的先决条件。本研究根据形态特征和微卫星 SSR 标记对 66 个亲本品系的多样性进行了研究。遗传变异参数揭示了单株高产分蘖数、单株产量和百粒重具有加性基因作用。Mahalanobis D2 统计根据产量和谷粒性状将基因型分为 10 个聚类。主成分分析确定了 4 个特征值大于 1 的 PC,占累积方差的 71.28%。多态 SSR 标记产生了 122 个等位基因,其中标记 RM474 的多态信息含量(0.83)和杂合指数(0.85)值最高。利用算术平均非加权配对组法(UPGMA),根据 jaccard 距离将基因型分成 7 个聚类。种群结构将整个种群分为 3 个亚群。在这两种聚类方法中,基因型的组合存在差异,但是,通过 PCA 确定的表现良好的基因型在这两种方法中被定位在不同的聚类中。位于不同聚类中的基因型 CBSN 495 和 CBSN 494 被确定为高产短效杂交种的潜在恢复系。CRR Dhan 310、CRR Dhan 315、IR64 DRT、CB 17135 和 WGL 347 之间的杂交可培育出营养更佳的气候智能型品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
期刊最新文献
OsIAA23 Promotes Heading by Directly Downregulating Ghd7 in rice. Multifunctional Transcription Factor YABBY6 Regulates Morphogenesis, Drought and Cold Stress Responses in Rice. OsPIPK-FAB, A Negative Regulator in Rice Immunity Unveiled by OsMBL1 Inhibition. CRISPR-Based Modulation of uORFs in DEP1 and GIF1 for Enhanced Rice Yield Traits. Indole-3-Acetic Acid (IAA) and Sugar Mediate Endosperm Development in Rice (Oryza sativa L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1