Pub Date : 2025-02-18DOI: 10.1186/s12284-025-00761-z
Andrews Danso Ofori, Wei Su, Tengda Zheng, Osmond Datsomor, John Kwame Titriku, Xing Xiang, Abdul Ghani Kandhro, Muhammad Irfan Ahmed, Edzesi Wisdom Mawuli, Richard Tuyee Awuah, Aiping Zheng
Jasmonic acid (JA) signaling plays a crucial role in rice defense against the striped stem borer, Chilo suppressalis, a notorious pest causing significant yield losses. This review explores the current understanding of JA-mediated defense mechanisms in rice, focusing on the molecular basis, regulatory elements, and practical implications for pest management. JA biosynthesis and signaling pathways are induced upon C. suppressalis infestation, leading to the activation of various defense responses. These include upregulation of JA-responsive genes involved in the production of proteinase inhibitors, volatile organic compounds, and other defensive compounds. The review also discusses the crosstalk between JA and other hormonal pathways, such as salicylic acid and ethylene, in fine-tuning defense responses. Structural modifications in rice plants, such as cell wall reinforcement and accumulation of secondary metabolites, have been highlighted as key components of JA-mediated defense against C. suppressalis. Furthermore, the practical applications of this knowledge in breeding insect-resistant rice varieties and developing sustainable pest management strategies were explored. Future research directions are proposed to further elucidate the complexities of JA signaling in rice-insect interactions and harness this knowledge to enhance crop protection.
{"title":"Jasmonic Acid (JA) Signaling Pathway in Rice Defense Against Chilo suppressalis Infestation.","authors":"Andrews Danso Ofori, Wei Su, Tengda Zheng, Osmond Datsomor, John Kwame Titriku, Xing Xiang, Abdul Ghani Kandhro, Muhammad Irfan Ahmed, Edzesi Wisdom Mawuli, Richard Tuyee Awuah, Aiping Zheng","doi":"10.1186/s12284-025-00761-z","DOIUrl":"https://doi.org/10.1186/s12284-025-00761-z","url":null,"abstract":"<p><p>Jasmonic acid (JA) signaling plays a crucial role in rice defense against the striped stem borer, Chilo suppressalis, a notorious pest causing significant yield losses. This review explores the current understanding of JA-mediated defense mechanisms in rice, focusing on the molecular basis, regulatory elements, and practical implications for pest management. JA biosynthesis and signaling pathways are induced upon C. suppressalis infestation, leading to the activation of various defense responses. These include upregulation of JA-responsive genes involved in the production of proteinase inhibitors, volatile organic compounds, and other defensive compounds. The review also discusses the crosstalk between JA and other hormonal pathways, such as salicylic acid and ethylene, in fine-tuning defense responses. Structural modifications in rice plants, such as cell wall reinforcement and accumulation of secondary metabolites, have been highlighted as key components of JA-mediated defense against C. suppressalis. Furthermore, the practical applications of this knowledge in breeding insect-resistant rice varieties and developing sustainable pest management strategies were explored. Future research directions are proposed to further elucidate the complexities of JA signaling in rice-insect interactions and harness this knowledge to enhance crop protection.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"7"},"PeriodicalIF":4.8,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-13DOI: 10.1186/s12284-025-00756-w
Tadamasa Ueda, Yojiro Taniguchi, Shunsuke Adachi, Matthew Shenton, Kiyosumi Hori, Junichi Tanaka
In Japan, high-yielding indica rice cultivars such as 'Habataki', 'Takanari', and 'Hokuriku 193' have been bred, and many genes related to the high-yield traits have been isolated from these and other indica cultivars. Many such genes are expected to be effective in increasing the yield of japonica rice, including those that increase sink size. It has been expected that high-yielding japonica rice could be bred by introducing sink-size genes into the genetic background of japonica cultivars such as 'Koshihikari', which show strong cold tolerance, have good taste characteristics, and fetch a high price. However, the corresponding near-isogenic lines did not necessarily produce high yields when tested in the field. In this review, we summarize information on the major high-yield-related rice genes and discuss pyramiding strategies to further increase the yield of japonica rice. In parallel with increasing sink size, source capacity needs to be increased by increasing photosynthetic rate per unit leaf area (single leaf photosynthesis), improving canopy structure, and increasing translocation capacity during the ripening stage. To implement these strategies, innovative breeding methodologies that efficiently produce the combinations of desired alleles are required.
{"title":"Gene Pyramiding Strategies for Sink Size and Source Capacity for High-Yield Japonica Rice Breeding.","authors":"Tadamasa Ueda, Yojiro Taniguchi, Shunsuke Adachi, Matthew Shenton, Kiyosumi Hori, Junichi Tanaka","doi":"10.1186/s12284-025-00756-w","DOIUrl":"10.1186/s12284-025-00756-w","url":null,"abstract":"<p><p>In Japan, high-yielding indica rice cultivars such as 'Habataki', 'Takanari', and 'Hokuriku 193' have been bred, and many genes related to the high-yield traits have been isolated from these and other indica cultivars. Many such genes are expected to be effective in increasing the yield of japonica rice, including those that increase sink size. It has been expected that high-yielding japonica rice could be bred by introducing sink-size genes into the genetic background of japonica cultivars such as 'Koshihikari', which show strong cold tolerance, have good taste characteristics, and fetch a high price. However, the corresponding near-isogenic lines did not necessarily produce high yields when tested in the field. In this review, we summarize information on the major high-yield-related rice genes and discuss pyramiding strategies to further increase the yield of japonica rice. In parallel with increasing sink size, source capacity needs to be increased by increasing photosynthetic rate per unit leaf area (single leaf photosynthesis), improving canopy structure, and increasing translocation capacity during the ripening stage. To implement these strategies, innovative breeding methodologies that efficiently produce the combinations of desired alleles are required.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"6"},"PeriodicalIF":4.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143410066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-07DOI: 10.1186/s12284-025-00760-0
Jasneet Singh, Nitika Sandhu, Aman Kumar, Om Prakash Raigar, Sutej Bains, Gaurav Augustine, Muskan Gupta, Ekta Kharche, Anu Kalia, Navtej Singh Bains, Arvind Kumar
The rise of direct-seeded rice cultivation as a suitable alternative to transplanted puddled rice depends on developing genotypes with high seedling emergence under deep sown conditions. Two rice genotypes (IRGC 128442 and PR126) were screened for contrasting seedling emergence and subjected to high-throughput RNA sequencing under varying sowing depths (4 cm and 10 cm) and time intervals (5, 10, and 15 days after sowing). On average, a total of 2702 differentially expressed genes were identified across twelve inter- and intra-genotypic pairwise differential expression analyses, with a false discovery rate ≤ 0.05 and log2 fold change ≥ ± 2. The DEGs specifically showing differential expression under deep-sowing stress were prioritized and further refined based on their corresponding gene ontology terms, gene set enrichment analysis and KEGG and plant reactome pathway. From this pool of DEGs, 24 genes were validated using qRT-PCR. Among these, two genes (LOC_Os04g51460 and LOC_Os02g45450) contribute to cell wall remodelling and membrane stability, while three genes (LOC_Os04g48484, LOC_Os06g04399, and LOC_Os07g15440) play key roles in mitigating abiotic stress. Transcriptional regulators (LOC_Os06g33940 and LOC_Os01g45730) drive stress responses and growth. Notably, high fold changes in LOC_Os03g22720 and LOC_Os07g01960 underscore their importance in early stress responses and metabolic adjustments. The transcriptome analysis also highlighted the role of 29 heat shock proteins in response to deep sowing stress. Differential expression of key components in the abscisic acid (ABA)-mediated signalling pathway such as OsABI5 (LOC_Os01g64000), phosphatase 2C-like (PP2C) (LOC_Os09g15670) and OsPYL (LOC_Os06g36670) indicated downregulation of ABA signalling in the genotype IRGC 128442. Additionally, a role for miRNA-mediated regulation of auxin response factors was hypothesized in seedling emergence regulation. The study brings us closer to understanding the genetic control of seedling emergence under deep sown conditions. Functional validation of the key candidate genes and pathways could provide new targets for genetic improvement, potentially contributing to the development of rice cultivars optimized for direct-seeded rice cultivation.
{"title":"Deciphering Regulatory Networks Governing Seedling Emergence in Deep-Sown Direct-Seeded Rice Cultivation.","authors":"Jasneet Singh, Nitika Sandhu, Aman Kumar, Om Prakash Raigar, Sutej Bains, Gaurav Augustine, Muskan Gupta, Ekta Kharche, Anu Kalia, Navtej Singh Bains, Arvind Kumar","doi":"10.1186/s12284-025-00760-0","DOIUrl":"10.1186/s12284-025-00760-0","url":null,"abstract":"<p><p>The rise of direct-seeded rice cultivation as a suitable alternative to transplanted puddled rice depends on developing genotypes with high seedling emergence under deep sown conditions. Two rice genotypes (IRGC 128442 and PR126) were screened for contrasting seedling emergence and subjected to high-throughput RNA sequencing under varying sowing depths (4 cm and 10 cm) and time intervals (5, 10, and 15 days after sowing). On average, a total of 2702 differentially expressed genes were identified across twelve inter- and intra-genotypic pairwise differential expression analyses, with a false discovery rate ≤ 0.05 and log2 fold change ≥ ± 2. The DEGs specifically showing differential expression under deep-sowing stress were prioritized and further refined based on their corresponding gene ontology terms, gene set enrichment analysis and KEGG and plant reactome pathway. From this pool of DEGs, 24 genes were validated using qRT-PCR. Among these, two genes (LOC_Os04g51460 and LOC_Os02g45450) contribute to cell wall remodelling and membrane stability, while three genes (LOC_Os04g48484, LOC_Os06g04399, and LOC_Os07g15440) play key roles in mitigating abiotic stress. Transcriptional regulators (LOC_Os06g33940 and LOC_Os01g45730) drive stress responses and growth. Notably, high fold changes in LOC_Os03g22720 and LOC_Os07g01960 underscore their importance in early stress responses and metabolic adjustments. The transcriptome analysis also highlighted the role of 29 heat shock proteins in response to deep sowing stress. Differential expression of key components in the abscisic acid (ABA)-mediated signalling pathway such as OsABI5 (LOC_Os01g64000), phosphatase 2C-like (PP2C) (LOC_Os09g15670) and OsPYL (LOC_Os06g36670) indicated downregulation of ABA signalling in the genotype IRGC 128442. Additionally, a role for miRNA-mediated regulation of auxin response factors was hypothesized in seedling emergence regulation. The study brings us closer to understanding the genetic control of seedling emergence under deep sown conditions. Functional validation of the key candidate genes and pathways could provide new targets for genetic improvement, potentially contributing to the development of rice cultivars optimized for direct-seeded rice cultivation.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"5"},"PeriodicalIF":4.8,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-29DOI: 10.1186/s12284-025-00759-7
Hao Sun, Qiqi Yao, Mei Hai, Tianhu Li, Jinghan Sun, Zhengbo Liu, Yang Ang, Yingying Zhao, Yanan Zhang, Xianping Cheng, Tao Huang, Yinping Chang, Mingyu Du, Erbao Liu
Panicle elongation length (PEL), which determines panicle exsertion, is an important outcrossing-related trait. Mining genes controlling PEL in rice (Oryza sativa L.) has great practical significance in breeding cytoplasmic male sterility (CMS) lines with increased PEL and simplified, high-efficiency seed production. Genome-wide association studies (GWAS) were performed on the PELs of 440 rice accessions in 2022 and 2023, considering 3.17 million single-nucleotide polymorphisms (SNPs) to detect the effects of different genes on PEL. A total of five quantitative trait loci (QTLs) significantly associated with PEL were detected in both years by using the general linear model (GLM) and the mixed linear model (MLM). Notably, our study identified a previously unreported QTL, qPE2.1. Three candidate genes associated with PEL were predicted by non-synonymous SNPs and functional annotation. We characterize one gibberellin (GA)-related gene, LOC_Os02g41954 (OsGA2ox9), which encodes gibberellin 2-beta-dioxygenase 7 located in the cell membrane and nucleus. Gibberellin 2-oxidase (GA2ox) has been reported to control GA levels by inactivating GA via 2-β hydroxylation. Compared with the short PELs of wild plants, mutant plants with Cas9-induced knockout (KO) of OsGA2ox9 exhibit long PELs. Therefore, OsGA2ox9 was identified as the key gene controlling PEL in rice. Haplotype analysis showed that the two polymorphisms of HapD cause amino acid residue changes from phenylalanine to leucine (F/L43) and isoleucine to phenylalanine (I/F52), which lead to the enhancement of panicle exsertion; therefore, we renamed this gene ENHANCED PANICLE EXSERTION (EPE1). Our study showed that EPE1 (OsGA2ox9) negatively regulated GA4 content in rice. Elite alleles of EPE1 can be used to further improve PEL in CMS lines to increase the outcrossing rate and yield or seed production in hybrid rice breeding.
{"title":"Elite Alleles of EPE1 Identified via Genome-wide Association Studies Increase Panicle Elongation Length in Rice.","authors":"Hao Sun, Qiqi Yao, Mei Hai, Tianhu Li, Jinghan Sun, Zhengbo Liu, Yang Ang, Yingying Zhao, Yanan Zhang, Xianping Cheng, Tao Huang, Yinping Chang, Mingyu Du, Erbao Liu","doi":"10.1186/s12284-025-00759-7","DOIUrl":"10.1186/s12284-025-00759-7","url":null,"abstract":"<p><p>Panicle elongation length (PEL), which determines panicle exsertion, is an important outcrossing-related trait. Mining genes controlling PEL in rice (Oryza sativa L.) has great practical significance in breeding cytoplasmic male sterility (CMS) lines with increased PEL and simplified, high-efficiency seed production. Genome-wide association studies (GWAS) were performed on the PELs of 440 rice accessions in 2022 and 2023, considering 3.17 million single-nucleotide polymorphisms (SNPs) to detect the effects of different genes on PEL. A total of five quantitative trait loci (QTLs) significantly associated with PEL were detected in both years by using the general linear model (GLM) and the mixed linear model (MLM). Notably, our study identified a previously unreported QTL, qPE2.1. Three candidate genes associated with PEL were predicted by non-synonymous SNPs and functional annotation. We characterize one gibberellin (GA)-related gene, LOC_Os02g41954 (OsGA2ox9), which encodes gibberellin 2-beta-dioxygenase 7 located in the cell membrane and nucleus. Gibberellin 2-oxidase (GA2ox) has been reported to control GA levels by inactivating GA via 2-β hydroxylation. Compared with the short PELs of wild plants, mutant plants with Cas9-induced knockout (KO) of OsGA2ox9 exhibit long PELs. Therefore, OsGA2ox9 was identified as the key gene controlling PEL in rice. Haplotype analysis showed that the two polymorphisms of HapD cause amino acid residue changes from phenylalanine to leucine (F/L<sup>43</sup>) and isoleucine to phenylalanine (I/F<sup>52</sup>), which lead to the enhancement of panicle exsertion; therefore, we renamed this gene ENHANCED PANICLE EXSERTION (EPE1). Our study showed that EPE1 (OsGA2ox9) negatively regulated GA4 content in rice. Elite alleles of EPE1 can be used to further improve PEL in CMS lines to increase the outcrossing rate and yield or seed production in hybrid rice breeding.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"4"},"PeriodicalIF":4.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.1186/s12284-025-00758-8
Tao Zhang, Zhengwei Wang, Qiaoquan Liu, Dongsheng Zhao
Rice grain size influences both grain yield and quality, making it a significant target for rice genetic improvement. In recent years, numerous genes related to grain size with differential effects have been cloned. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system is a convenient tool for modifying genes. The use of the CRISPR/Cas9 tool for the genetic improvement of grain size-related genes is worth exploring. This paper summarizes the known grain size-related genes and the use of CRISPR/Cas9 for grain size modification and discusses the potential applications of CRISPR/Cas9 for improving rice grain size.
{"title":"Genetic Improvement of rice Grain size Using the CRISPR/Cas9 System.","authors":"Tao Zhang, Zhengwei Wang, Qiaoquan Liu, Dongsheng Zhao","doi":"10.1186/s12284-025-00758-8","DOIUrl":"10.1186/s12284-025-00758-8","url":null,"abstract":"<p><p>Rice grain size influences both grain yield and quality, making it a significant target for rice genetic improvement. In recent years, numerous genes related to grain size with differential effects have been cloned. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system is a convenient tool for modifying genes. The use of the CRISPR/Cas9 tool for the genetic improvement of grain size-related genes is worth exploring. This paper summarizes the known grain size-related genes and the use of CRISPR/Cas9 for grain size modification and discusses the potential applications of CRISPR/Cas9 for improving rice grain size.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"3"},"PeriodicalIF":4.8,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enhancing nitrogen (N) fixation in rice plants can reduce N fertilizer application and contribute to sustainable rice production, particularly under low-N conditions. However, detailed microbial and metabolic characterization of N fixation in rice stems, unlike in the well-studied roots, has not been investigated. Therefore, the aim of this study was to determine the active N-fixing sites, their diazotroph communities, and the usability of possible carbon sources in stems compared with roots. The N-fixing activity and copy number of the nitrogenase gene in the rice stem were high in the outer part of the unelongated stem (basal node), especially in the epidermis. N fixation, estimated using the acetylene reduction assay, was also higher in the leaf sheath and root than in the inner part of the unelongated stem and culm. Amplicon sequence variants (ASVs) close to sugar-utilizing heterotrophic diazotrophs belonging to Betaproteobacteria and type II methanotrophic diazotrophs belonging to Alphaproteobacteria were abundant in the outer part of the unelongated stems. Media containing crushed unelongated stems exhibited N-fixing activity when sucrose, glucose, and methane were added as the sole carbon sources. This suggested that N fixation in the unelongated stems was at least partly supported by sugars (sucrose and glucose) and methane as carbon sources. ASVs close to sugar-utilizing heterotrophs belonging to Actinobacteria were also highly abundant in the unelongated stem; however, their functions need to be further elucidated. The present finding that diazotrophs in rice stems can use sugars such as sucrose and glucose synthesized by rice plants provides new insights into enhancing N fixation in rice stems.
{"title":"Unelongated Stems are an Active Nitrogen-Fixing Site in Rice Stems Supported by Both Sugar and Methane Under Low Nitrogen Conditions.","authors":"Takanori Okamoto, Yukina Hotta, Rina Shinjo, Yoko Masuda, Arisa Nishihara, Ryosuke Sasaki, Masami Yokota Hirai, Reo Nishiwaki, Sota Miyado, Daisuke Sugiura, Motohiko Kondo","doi":"10.1186/s12284-025-00757-9","DOIUrl":"10.1186/s12284-025-00757-9","url":null,"abstract":"<p><p>Enhancing nitrogen (N) fixation in rice plants can reduce N fertilizer application and contribute to sustainable rice production, particularly under low-N conditions. However, detailed microbial and metabolic characterization of N fixation in rice stems, unlike in the well-studied roots, has not been investigated. Therefore, the aim of this study was to determine the active N-fixing sites, their diazotroph communities, and the usability of possible carbon sources in stems compared with roots. The N-fixing activity and copy number of the nitrogenase gene in the rice stem were high in the outer part of the unelongated stem (basal node), especially in the epidermis. N fixation, estimated using the acetylene reduction assay, was also higher in the leaf sheath and root than in the inner part of the unelongated stem and culm. Amplicon sequence variants (ASVs) close to sugar-utilizing heterotrophic diazotrophs belonging to Betaproteobacteria and type II methanotrophic diazotrophs belonging to Alphaproteobacteria were abundant in the outer part of the unelongated stems. Media containing crushed unelongated stems exhibited N-fixing activity when sucrose, glucose, and methane were added as the sole carbon sources. This suggested that N fixation in the unelongated stems was at least partly supported by sugars (sucrose and glucose) and methane as carbon sources. ASVs close to sugar-utilizing heterotrophs belonging to Actinobacteria were also highly abundant in the unelongated stem; however, their functions need to be further elucidated. The present finding that diazotrophs in rice stems can use sugars such as sucrose and glucose synthesized by rice plants provides new insights into enhancing N fixation in rice stems.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"2"},"PeriodicalIF":4.8,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1186/s12284-024-00754-4
Lina Zhang, Fei Wang, Chunhui Liu, Xiaoding Ma, Di Cui, Bing Han, Longzhi Han
Rice is highly sensitive to low temperatures, making cold stress a significant factor limiting its growth, especially during the bud bursting stage. To address this, an RIL population derived from a cross between cold-tolerant and cold-sensitive rice varieties was used to identify nine QTLs linked to cold tolerance under temperatures of 4 ℃, 5 °C, and 6 ℃ using a high-density genetic map. One candidate gene, LOC_Os07g44410, was identified through gene function annotation, haplotype analysis, and qRT-PCR, with two main haplotypes (Hap1 and Hap2) showing distinct phenotypic differences. qRT-PCR analysis showed that the expression level of LOC_Os07g44410 in cold tolerant lines carrying Hap1 was significantly higher than that in cold sensitive lines carrying Hap2. Hap1, associated with greater cold tolerance, was predominant in japonica rice, while Hap2 related to cold sensitive was majority in indica rice. This study offers valuable genetic resources for further research on cold tolerance mechanisms and breeding applications at the bud bursting stage in rice.
{"title":"Linkage Mapping and Identification of Candidate Genes for Cold Tolerance in Rice (Oryza Sativa L.) at the Bud Bursting Stage.","authors":"Lina Zhang, Fei Wang, Chunhui Liu, Xiaoding Ma, Di Cui, Bing Han, Longzhi Han","doi":"10.1186/s12284-024-00754-4","DOIUrl":"10.1186/s12284-024-00754-4","url":null,"abstract":"<p><p>Rice is highly sensitive to low temperatures, making cold stress a significant factor limiting its growth, especially during the bud bursting stage. To address this, an RIL population derived from a cross between cold-tolerant and cold-sensitive rice varieties was used to identify nine QTLs linked to cold tolerance under temperatures of 4 ℃, 5 °C, and 6 ℃ using a high-density genetic map. One candidate gene, LOC_Os07g44410, was identified through gene function annotation, haplotype analysis, and qRT-PCR, with two main haplotypes (Hap1 and Hap2) showing distinct phenotypic differences. qRT-PCR analysis showed that the expression level of LOC_Os07g44410 in cold tolerant lines carrying Hap1 was significantly higher than that in cold sensitive lines carrying Hap2. Hap1, associated with greater cold tolerance, was predominant in japonica rice, while Hap2 related to cold sensitive was majority in indica rice. This study offers valuable genetic resources for further research on cold tolerance mechanisms and breeding applications at the bud bursting stage in rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"1"},"PeriodicalIF":4.8,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26DOI: 10.1186/s12284-024-00753-5
Wonjae Hwang, Woo-Jong Hong, Eui-Jung Kim, Jihye Kim, Sunok Moon, Ki-Hong Jung
The Rice Online expression profiles Array Database version 2 (ROADv2; https://roadv2.khu.ac.kr ), an enhanced database for rice gene expression analysis, transitions from the previous microarray platforms to RNA-Seq data for improved accuracy. It encompasses 328 datasets from diverse experimental series, including anatomy, abiotic and biotic stress, hormone response, and nutrient starvation. Key updates include gene annotation (upgraded to RGAP version 7) and functional enrichment data (utilizing recent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) versions). ROADv2 debuts protein-protein interaction (PPI) network analysis and broadens interactive visualization across all features. Gene expression data are segmented into anatomy, biotic, abiotic, nutrient, and hormone categories, with user-interactive heatmaps displaying normalized log2 expression and log2 fold change data. Coexpression correlation analysis identifies genes with similar patterns, visualized through interactive network graphs. Functional enrichment tools display GO and KEGG analyses with significant terms emphasized in various formats. PPI network analysis integrates coexpression data to enhance prediction accuracy. Validation studies affirm the database's reliability, demonstrating reproducible tissue/organ-specific expression patterns. ROADv2 provides a comprehensive resource for rice functional genomics studies.
Rice Online expression profiles Array Database version 2 (ROADv2;https://roadv2.khu.ac.kr),一个用于水稻基因表达分析的增强数据库,从以前的微阵列平台过渡到RNA-Seq数据,以提高准确性。它包含来自不同实验系列的328个数据集,包括解剖学,非生物和生物应激,激素反应和营养饥饿。主要更新包括基因注释(升级到RGAP版本7)和功能富集数据(利用最近的基因本体(GO)和京都基因与基因组百科全书(KEGG)版本)。ROADv2首次推出蛋白质蛋白相互作用(PPI)网络分析,并拓宽了所有功能的交互式可视化。基因表达数据分为解剖、生物、非生物、营养和激素类别,用户交互热图显示标准化的log2表达和log2倍变化数据。共表达相关性分析识别具有相似模式的基因,通过交互式网络图可视化。功能富集工具显示GO和KEGG分析,并以各种格式强调重要术语。PPI网络分析集成了共表达数据,提高了预测精度。验证研究证实了数据库的可靠性,展示了可复制的组织/器官特异性表达模式。ROADv2为水稻功能基因组学研究提供了全面的资源。
{"title":"The Rice Online Expression Profiles Array Database Version 2 (ROADv2): An Interactive Atlas for Rice Functional Genomics.","authors":"Wonjae Hwang, Woo-Jong Hong, Eui-Jung Kim, Jihye Kim, Sunok Moon, Ki-Hong Jung","doi":"10.1186/s12284-024-00753-5","DOIUrl":"10.1186/s12284-024-00753-5","url":null,"abstract":"<p><p>The Rice Online expression profiles Array Database version 2 (ROADv2; https://roadv2.khu.ac.kr ), an enhanced database for rice gene expression analysis, transitions from the previous microarray platforms to RNA-Seq data for improved accuracy. It encompasses 328 datasets from diverse experimental series, including anatomy, abiotic and biotic stress, hormone response, and nutrient starvation. Key updates include gene annotation (upgraded to RGAP version 7) and functional enrichment data (utilizing recent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) versions). ROADv2 debuts protein-protein interaction (PPI) network analysis and broadens interactive visualization across all features. Gene expression data are segmented into anatomy, biotic, abiotic, nutrient, and hormone categories, with user-interactive heatmaps displaying normalized log2 expression and log2 fold change data. Coexpression correlation analysis identifies genes with similar patterns, visualized through interactive network graphs. Functional enrichment tools display GO and KEGG analyses with significant terms emphasized in various formats. PPI network analysis integrates coexpression data to enhance prediction accuracy. Validation studies affirm the database's reliability, demonstrating reproducible tissue/organ-specific expression patterns. ROADv2 provides a comprehensive resource for rice functional genomics studies.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"75"},"PeriodicalIF":4.8,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stigma exsertion rate (SER) is a crucial trait that influences the seed production of hybrid rice by determining the outcrossing ability of male sterile lines (MSLs). However, the molecular genetic mechanisms underlying SER are still poorly understood. In this study, we identified 14 quantitative trait loci (QTLs) using a recombinant inbred line (RIL) population derived from B805D-MR-16-8-3 (B805D) and Hua6S. Two major QTLs, qSE1 and qSE9, were validated for their effects in the residual heterozygous line (RHL) background. The RHL carrying homozygous qSE1 region from Hua6S increased dual stigma exsertion rate (DSE) by 14.67% and 15.04%, and increased total stigma exsertion rate (TSE) by 11.73% and 13.04%, in F10 and F11 progeny, respectively. Conversely, the RHL carrying homozygous qSE9 region from B805D showed a substantial increase of 22.72% and 14.45% in single stigma exsertion rate (SSE), an increase of 13.46% and 8.30% in TSE, and an increase in percentage of spikelets with exserted stigma (PSE) by 24.82% and 15.57%, respectively, in F10 and F11 progeny. Furthermore, examination of floral organ traits revealed that both the Hua6S allele of qSE1 and the B805D allele of qSE9 increased pistil size to improve SER, but they had contrasting effects on spikelet shape. Subsequently, qSE1 and qSE9 were fine-mapped to intervals of 246.5 kb and 341.4 kb, respectively. A combination of sequencing, expression and haplotype analysis revealed that a single nucleotide variation (T to C) in the 5'UTR region of LOC_Os01g72020 (OsBOP1) was likely to be the functional variation for qSE1. Collectively, our work has laid a foundation for cloning the genes responsible for SER, and demonstrated that the Hua6S allele of qSE1 and the B805D allele of qSE9 can effectively increase SER, which could make important contributions to the genetic improvement of MSLs aimed at improving hybrid seed production.
{"title":"Genetic Analysis and Fine Mapping of QTLs for Stigma Exsertion Rate in Rice.","authors":"Hanyuan Yang, Yin Zhou, Pingbo Li, Enyu Liu, Ping Sun, Yiting Ao, Rongjia Liu, Haozhou Gao, Zherui Xu, Ping Yang, Xinyue Wang, Guanjun Gao, Qinglu Zhang, Lizhong Xiong, Yuqing He","doi":"10.1186/s12284-024-00752-6","DOIUrl":"10.1186/s12284-024-00752-6","url":null,"abstract":"<p><p>Stigma exsertion rate (SER) is a crucial trait that influences the seed production of hybrid rice by determining the outcrossing ability of male sterile lines (MSLs). However, the molecular genetic mechanisms underlying SER are still poorly understood. In this study, we identified 14 quantitative trait loci (QTLs) using a recombinant inbred line (RIL) population derived from B805D-MR-16-8-3 (B805D) and Hua6S. Two major QTLs, qSE1 and qSE9, were validated for their effects in the residual heterozygous line (RHL) background. The RHL carrying homozygous qSE1 region from Hua6S increased dual stigma exsertion rate (DSE) by 14.67% and 15.04%, and increased total stigma exsertion rate (TSE) by 11.73% and 13.04%, in F<sub>10</sub> and F<sub>11</sub> progeny, respectively. Conversely, the RHL carrying homozygous qSE9 region from B805D showed a substantial increase of 22.72% and 14.45% in single stigma exsertion rate (SSE), an increase of 13.46% and 8.30% in TSE, and an increase in percentage of spikelets with exserted stigma (PSE) by 24.82% and 15.57%, respectively, in F<sub>10</sub> and F<sub>11</sub> progeny. Furthermore, examination of floral organ traits revealed that both the Hua6S allele of qSE1 and the B805D allele of qSE9 increased pistil size to improve SER, but they had contrasting effects on spikelet shape. Subsequently, qSE1 and qSE9 were fine-mapped to intervals of 246.5 kb and 341.4 kb, respectively. A combination of sequencing, expression and haplotype analysis revealed that a single nucleotide variation (T to C) in the 5'UTR region of LOC_Os01g72020 (OsBOP1) was likely to be the functional variation for qSE1. Collectively, our work has laid a foundation for cloning the genes responsible for SER, and demonstrated that the Hua6S allele of qSE1 and the B805D allele of qSE9 can effectively increase SER, which could make important contributions to the genetic improvement of MSLs aimed at improving hybrid seed production.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"74"},"PeriodicalIF":4.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655996/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the intensification of the greenhouse effect, a series of natural phenomena, such as global warming, are gradually recognized; when the ambient temperature increases to the extent that it causes heat stress in plants, agricultural production will inevitably be affected. Therefore, several issues associated with heat stress in crops urgently need to be solved. Rice is one of the momentous food crops for humans, widely planted in tropical and subtropical monsoon regions. It is prone to high temperature stress in summer, leading to a decrease in yield and quality. Understanding how rice can tolerate heat stress through genetic effects is particularly vital. This article reviews how rice respond to rising temperature by integrating the molecular regulatory pathways and introduce its physiological mechanisms of tolerance to heat stress from the perspective of molecular biology. In addition, genome selection and genetic engineering for rice heat tolerance were emphasized to provide a theoretical basis for the sustainability and stability of crop yield-quality structures under high temperatures from the point of view of molecular breeding.
{"title":"How Rice Responds to Temperature Changes and Defeats Heat Stress.","authors":"Yuan-Hang Xing, Hongyu Lu, Xinfeng Zhu, Yufei Deng, Yujun Xie, Qiuhong Luo, Jinsheng Yu","doi":"10.1186/s12284-024-00748-2","DOIUrl":"10.1186/s12284-024-00748-2","url":null,"abstract":"<p><p>With the intensification of the greenhouse effect, a series of natural phenomena, such as global warming, are gradually recognized; when the ambient temperature increases to the extent that it causes heat stress in plants, agricultural production will inevitably be affected. Therefore, several issues associated with heat stress in crops urgently need to be solved. Rice is one of the momentous food crops for humans, widely planted in tropical and subtropical monsoon regions. It is prone to high temperature stress in summer, leading to a decrease in yield and quality. Understanding how rice can tolerate heat stress through genetic effects is particularly vital. This article reviews how rice respond to rising temperature by integrating the molecular regulatory pathways and introduce its physiological mechanisms of tolerance to heat stress from the perspective of molecular biology. In addition, genome selection and genetic engineering for rice heat tolerance were emphasized to provide a theoretical basis for the sustainability and stability of crop yield-quality structures under high temperatures from the point of view of molecular breeding.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"73"},"PeriodicalIF":4.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607370/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}