Brenda V. Loera-García, Socorro Leyva-Ramos, Jaime Cardoso-Ortiz, Saúl Noriega, Antonio Romo-Mancillas, Kim M. Baines, Sarah L. McOnei
{"title":"An Alternative Method for the Selective Synthesis of Ortho-nitro Anilines Using Bismuth Nitrate Pentahydrate","authors":"Brenda V. Loera-García, Socorro Leyva-Ramos, Jaime Cardoso-Ortiz, Saúl Noriega, Antonio Romo-Mancillas, Kim M. Baines, Sarah L. McOnei","doi":"10.2174/0115701794273947231206111750","DOIUrl":null,"url":null,"abstract":"Background: Nitroaromatic compounds are important scaffolds used for the syn-thesis of a variety of compounds, such as explosives, herbicides, dyes, perfumes and phar-maceuticals. Bismuth nitrate pentahydrate is a widely used reagent in organic synthesis; how-ever, its utility as a nitrating agent for anilines is underexplored. Objective: The aim of this work is to propose and find the proper reaction conditions of an alternative nitrating agent constituted by a mixture of bismuth nitrate / acetic anhydride in DCM with a series of substituted anilines under mild reflux. Methods: Several anilines having both activating and deactivating substituents in the ortho, meta and para positions were the substrate for the nitration reaction. Experimental conditions were performed in “one-pot” conditions before product purification. Results: Bi(NO3)3•5H2O demonstrated to be effective and somehow regioselective when it came to the nitration of anilines in the ortho position. Although other products were also identified under these conditions, in most cases, the ortho derivative was the major or even the only product obtained with moderate to high yields in the range of 50% – 96%. Conclusion: Bi(NO3)3•5H2O is an efficient and safe nitrating agent since the use of concen-trated and corrosive acids like sulfuric and nitric is avoided; furthermore, bismuth nitrate is low-priced and no special care nor equipment is required.","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701794273947231206111750","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Nitroaromatic compounds are important scaffolds used for the syn-thesis of a variety of compounds, such as explosives, herbicides, dyes, perfumes and phar-maceuticals. Bismuth nitrate pentahydrate is a widely used reagent in organic synthesis; how-ever, its utility as a nitrating agent for anilines is underexplored. Objective: The aim of this work is to propose and find the proper reaction conditions of an alternative nitrating agent constituted by a mixture of bismuth nitrate / acetic anhydride in DCM with a series of substituted anilines under mild reflux. Methods: Several anilines having both activating and deactivating substituents in the ortho, meta and para positions were the substrate for the nitration reaction. Experimental conditions were performed in “one-pot” conditions before product purification. Results: Bi(NO3)3•5H2O demonstrated to be effective and somehow regioselective when it came to the nitration of anilines in the ortho position. Although other products were also identified under these conditions, in most cases, the ortho derivative was the major or even the only product obtained with moderate to high yields in the range of 50% – 96%. Conclusion: Bi(NO3)3•5H2O is an efficient and safe nitrating agent since the use of concen-trated and corrosive acids like sulfuric and nitric is avoided; furthermore, bismuth nitrate is low-priced and no special care nor equipment is required.
期刊介绍:
Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.