{"title":"Blended Laboratory Design Using Raspberry Pi Pico for Digital Circuits and Systems","authors":"Zoe C. M. Davidson;Shuping Dang;Xenofon Vasilakos","doi":"10.1109/TLT.2024.3363230","DOIUrl":null,"url":null,"abstract":"Raspberry Pi Pico, based on chip RP2040, is an easy-to-use development microcontroller board that can provide flexible input/output functions and meets the teaching needs of basic electronics to first-year university undergraduates. This article presents our blended laboratory design using Raspberry Pi Pico for the course unit Digital Circuits and Systems. Considering the impacts of Coronavirus Disease 2019 (COVID-19) and the reduced number of students attending the in-person laboratory, we provide an alternative approach using an online Raspberry Pi Pico simulator produced by Wokwi for those students who cannot attend the physical laboratory. The entire laboratory is designed by design-based learning pedagogical methodology and consists of three dependent sessions. Throughout the three laboratory sessions, first-year undergraduates are expected to understand the basic digital logic and electronic circuits by building a simplified interactive traffic light controller system using Raspberry Pi Pico and Python programming. The intended learning outcomes, full details of the blended laboratory design, and the laboratory design evaluation results are given and discussed in this article to verify the effectiveness of the blended laboratory design using Raspberry Pi Pico. By analyzing the empirical data collected from laboratory participants, the effectiveness of the proposed blended laboratory design can be well supported, and all intended learning outcomes are successfully achieved subject to the impacts of COVID-19.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"17 ","pages":"1170-1183"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10423829/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Raspberry Pi Pico, based on chip RP2040, is an easy-to-use development microcontroller board that can provide flexible input/output functions and meets the teaching needs of basic electronics to first-year university undergraduates. This article presents our blended laboratory design using Raspberry Pi Pico for the course unit Digital Circuits and Systems. Considering the impacts of Coronavirus Disease 2019 (COVID-19) and the reduced number of students attending the in-person laboratory, we provide an alternative approach using an online Raspberry Pi Pico simulator produced by Wokwi for those students who cannot attend the physical laboratory. The entire laboratory is designed by design-based learning pedagogical methodology and consists of three dependent sessions. Throughout the three laboratory sessions, first-year undergraduates are expected to understand the basic digital logic and electronic circuits by building a simplified interactive traffic light controller system using Raspberry Pi Pico and Python programming. The intended learning outcomes, full details of the blended laboratory design, and the laboratory design evaluation results are given and discussed in this article to verify the effectiveness of the blended laboratory design using Raspberry Pi Pico. By analyzing the empirical data collected from laboratory participants, the effectiveness of the proposed blended laboratory design can be well supported, and all intended learning outcomes are successfully achieved subject to the impacts of COVID-19.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.