{"title":"Partition of ordered triples into uniform holey ordered designs","authors":"Yuli Tan, Junling Zhou","doi":"10.1002/jcd.21933","DOIUrl":null,"url":null,"abstract":"<p>A large set <math>\n <semantics>\n <mrow>\n <mtext>LOD</mtext>\n <mrow>\n <mo>(</mo>\n <mi>v</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{LOD}(v)$</annotation>\n </semantics></math> is a partition of all ordered triples of a <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math>-set into <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $v-2$</annotation>\n </semantics></math> disjoint ordered designs of order <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math>. In this paper, we generalize the large set <math>\n <semantics>\n <mrow>\n <mtext>LOD</mtext>\n <mrow>\n <mo>(</mo>\n <mi>v</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{LOD}(v)$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n <mo>=</mo>\n <mi>g</mi>\n <mi>t</mi>\n </mrow>\n <annotation> $v=gt$</annotation>\n </semantics></math> to the notion of <math>\n <semantics>\n <mrow>\n <mtext>POT</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{POT}({g}^{t})$</annotation>\n </semantics></math>, representing a partition of all ordered triples of a <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mi>t</mi>\n </mrow>\n <annotation> $gt$</annotation>\n </semantics></math>-set into disjoint uniform holely ordered designs <math>\n <semantics>\n <mrow>\n <mtext>HOD</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{HOD}({g}^{t})$</annotation>\n </semantics></math>s. We show that a <math>\n <semantics>\n <mrow>\n <mtext>POT</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{POT}({g}^{t})$</annotation>\n </semantics></math> exists if and only if <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $g=1,2$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $t\\ge 3$</annotation>\n </semantics></math>, except for <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mn>6</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(g,t)=(1,6)$</annotation>\n </semantics></math>. Moreover, we study the existence of a <math>\n <semantics>\n <mrow>\n <mtext>POT</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{POT}({g}^{t})$</annotation>\n </semantics></math> with every member <math>\n <semantics>\n <mrow>\n <mtext>HOD</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{HOD}({g}^{t})$</annotation>\n </semantics></math> having a kind of resolution. We show that a resolvable <math>\n <semantics>\n <mrow>\n <mtext>POT</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{POT}({g}^{t})$</annotation>\n </semantics></math> exists if and only if <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $g=1,2$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $t\\ge 3$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>≠</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mn>6</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(g,t)\\ne (1,6)$</annotation>\n </semantics></math>, with 27 possible exceptions. For almost resolvable <math>\n <semantics>\n <mrow>\n <mtext>POT</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mn>2</mn>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{POT}({2}^{t})$</annotation>\n </semantics></math>s, we prove the asymptotic existence and present a few infinite families.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 5","pages":"274-293"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21933","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A large set is a partition of all ordered triples of a -set into disjoint ordered designs of order . In this paper, we generalize the large set with to the notion of , representing a partition of all ordered triples of a -set into disjoint uniform holely ordered designs s. We show that a exists if and only if and , except for . Moreover, we study the existence of a with every member having a kind of resolution. We show that a resolvable exists if and only if , , , with 27 possible exceptions. For almost resolvable s, we prove the asymptotic existence and present a few infinite families.
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.