Hydrodynamic control of silicone elastomers on between porous media

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Journal of Industrial Textiles Pub Date : 2024-01-25 DOI:10.1177/15280837241227246
Zhengyuan Ma, Ruoyang Chen, Yixiao Qu, Yuan Kong, Kami Hu, Qin Zhou, Siye Xu, Ziyue Yan, Yunchu Yang, Hui He
{"title":"Hydrodynamic control of silicone elastomers on between porous media","authors":"Zhengyuan Ma, Ruoyang Chen, Yixiao Qu, Yuan Kong, Kami Hu, Qin Zhou, Siye Xu, Ziyue Yan, Yunchu Yang, Hui He","doi":"10.1177/15280837241227246","DOIUrl":null,"url":null,"abstract":"Silicone elastomers, for example, polydimethylsiloxane (PDMS), have been widely used as cross-linkers for fabrication of flexible strain sensors. They not only lend strong adhesion to adjacent materials, for example, porous fabrics, but also tune their elastic property. Silicone elastomer precursors, which are typical non-Newtonian fluids, can easily penetrate into porous fabrics, driven by the capillary effects of fibers. Unfortunately, such a penetration has negative effects on both adhesion strength and elastic property of PDMS, thus limiting their applications. Here we report a facile method for preparing uniform silicone elastomer films, that is, PDMS, on between porous media via controlling the hydrodynamics of elastomer precursors. Our experiments show that the hydrodynamics of elastomer precursors can be easily controlled by modulating the pre-curing time of PDMS precursors to prevent them from penetration into porous media but keep their high adhesion. Based on this hydrodynamic modulation of PDMS precursors, we firmly adhere conductive silver nanowires (AgNWs) onto knitted fabrics, and further combine composites with common clothing from the point of view of ergonomics, showing the possibility of applying such a modulation to the fabrication of wearable strain sensors. Our findings not only present an understanding of liquid transport in porous media, but also provide a novel method of controlling the hydrodynamics of elastomer precursors in porous media for achieving the effective wearable sensors.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":"10 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15280837241227246","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

Silicone elastomers, for example, polydimethylsiloxane (PDMS), have been widely used as cross-linkers for fabrication of flexible strain sensors. They not only lend strong adhesion to adjacent materials, for example, porous fabrics, but also tune their elastic property. Silicone elastomer precursors, which are typical non-Newtonian fluids, can easily penetrate into porous fabrics, driven by the capillary effects of fibers. Unfortunately, such a penetration has negative effects on both adhesion strength and elastic property of PDMS, thus limiting their applications. Here we report a facile method for preparing uniform silicone elastomer films, that is, PDMS, on between porous media via controlling the hydrodynamics of elastomer precursors. Our experiments show that the hydrodynamics of elastomer precursors can be easily controlled by modulating the pre-curing time of PDMS precursors to prevent them from penetration into porous media but keep their high adhesion. Based on this hydrodynamic modulation of PDMS precursors, we firmly adhere conductive silver nanowires (AgNWs) onto knitted fabrics, and further combine composites with common clothing from the point of view of ergonomics, showing the possibility of applying such a modulation to the fabrication of wearable strain sensors. Our findings not only present an understanding of liquid transport in porous media, but also provide a novel method of controlling the hydrodynamics of elastomer precursors in porous media for achieving the effective wearable sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔介质间硅树脂弹性体的流体力学控制
有机硅弹性体,例如聚二甲基硅氧烷(PDMS),已被广泛用作制造柔性应变传感器的交联剂。它们不仅能与相邻材料(如多孔织物)产生强大的粘合力,还能调整其弹性特性。有机硅弹性体前体是典型的非牛顿流体,在纤维的毛细作用下,很容易渗透到多孔织物中。遗憾的是,这种渗透会对 PDMS 的粘附强度和弹性性能产生负面影响,从而限制了其应用。在此,我们报告了一种通过控制弹性体前体的流体力学,在多孔介质间制备均匀有机硅弹性体薄膜(即 PDMS)的简便方法。我们的实验表明,通过调节 PDMS 前体的预固化时间,可以轻松控制弹性体前体的流体力学,从而防止它们渗透到多孔介质中,但又能保持高粘附性。基于这种对 PDMS 前体的流体力学调制,我们将导电银纳米线(AgNW)牢固地粘附在针织物上,并进一步从人体工程学的角度将复合材料与普通衣物相结合,展示了将这种调制应用于制造可穿戴应变传感器的可能性。我们的研究结果不仅展示了对多孔介质中液体传输的理解,还提供了一种控制多孔介质中弹性体前体流体力学的新方法,以实现有效的可穿戴传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Textiles
Journal of Industrial Textiles MATERIALS SCIENCE, TEXTILES-
CiteScore
5.30
自引率
18.80%
发文量
165
审稿时长
2.3 months
期刊介绍: The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.
期刊最新文献
Influence of honeycomb structures on fluids transmission and heat retention properties; An initiative towards stretchable weaves Experimental study on protective performance of ACF sandwich composites with different configurations in high-velocity impact Comprehensive study of the off-axis mechanical behaviors of a Polytetrafluoroethylene‐ coated fabric after 23 Years of service at Shanghai stadium Transformation of zinc acetate into ZnO nanofibers for enhanced NOx gas sensing: Cost-effective strategies and additive-free optimization Multifunctional sandwich materials with ROTIS structure for improved thermal and electrical properties in construction application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1