The Influence of an External Uniform Magnetic Field on the Process of Synthesis of Fe2O3 Nanoparticles in the Plasma of an Impulse Underwater Discharge

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2024-02-23 DOI:10.1007/s11090-024-10458-8
Sirotkin Nikolay, Korolev Victor
{"title":"The Influence of an External Uniform Magnetic Field on the Process of Synthesis of Fe2O3 Nanoparticles in the Plasma of an Impulse Underwater Discharge","authors":"Sirotkin Nikolay,&nbsp;Korolev Victor","doi":"10.1007/s11090-024-10458-8","DOIUrl":null,"url":null,"abstract":"<div><p>The work provides a study of the effects of an external uniform magnetic field on the underwater pulsed discharge burning process. The presence of a magnetic field affects the waveforms of current and voltage, resulting in a decrease in amplitude values and frequency of discharge pulses. The presence of an external magnetic field was found to affect processes of the synthesis of iron oxide powders. Different polymorphic modifications of Fe<sub>2</sub>O<sub>3</sub> were obtained depending on the orientation of the magnetic field. The formation of larger iron oxide nanoparticles is facilitated by the magnetic field. The release of desublimation energy, accompanied by heating, encourages the increasing the degree of crystallinity of samples in the presence of a magnetic field. Shown, that the presence of an external magnetic field has significant effects on the underwater pulsed discharge process, altering the electrical properties of the discharge and influencing the synthesis of oxide nanoparticles.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 2","pages":"965 - 981"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10458-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The work provides a study of the effects of an external uniform magnetic field on the underwater pulsed discharge burning process. The presence of a magnetic field affects the waveforms of current and voltage, resulting in a decrease in amplitude values and frequency of discharge pulses. The presence of an external magnetic field was found to affect processes of the synthesis of iron oxide powders. Different polymorphic modifications of Fe2O3 were obtained depending on the orientation of the magnetic field. The formation of larger iron oxide nanoparticles is facilitated by the magnetic field. The release of desublimation energy, accompanied by heating, encourages the increasing the degree of crystallinity of samples in the presence of a magnetic field. Shown, that the presence of an external magnetic field has significant effects on the underwater pulsed discharge process, altering the electrical properties of the discharge and influencing the synthesis of oxide nanoparticles.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外部均匀磁场对脉冲水下放电等离子体中合成 Fe2O3 纳米粒子过程的影响
这项工作研究了外部均匀磁场对水下脉冲放电燃烧过程的影响。磁场的存在会影响电流和电压的波形,导致放电脉冲的振幅值和频率降低。研究发现,外部磁场的存在会影响氧化铁粉末的合成过程。根据磁场方向的不同,Fe2O3 会产生不同的多晶体变化。磁场促进了较大氧化铁纳米颗粒的形成。伴随着加热,解升华能量的释放促进了样品在磁场作用下结晶度的提高。结果表明,外部磁场的存在对水下脉冲放电过程有重大影响,改变了放电的电特性,并影响了氧化物纳米粒子的合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Chitosan Hydrogels with Antibacterial and Antifungal Properties: Enhanced Properties by Incorporating of Plasma Activated Water Dielectric Barrier Discharge Plasma Combined with Ce-Ni Mesoporous catalysts for CO2 splitting to CO Assessing the Preservation Effectiveness: A Comparative Study of Plasma Activated Water with Various Preservatives on Capsicum annuum L. (Jalapeño and Pusa Jwala) Recent Advances in Non-Thermal Plasma for Seed Germination, Plant Growth, and Secondary Metabolite Synthesis: A Promising Frontier for Sustainable Agriculture Non-Oxidative Coupling of Methane via Plasma-Catalysis Over M/γ-Al2O3 Catalysts (M = Ni, Fe, Rh, Pt and Pd): Impact of Active Metal and Noble Gas Co-Feeding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1