Duong Minh Le, Matthew J. Desmond, Michael Knapp, Olga Kardailsky, Wendy A. Nelson, Giuseppe C. Zuccarello, Christopher D. Hepburn
{"title":"Population genetic structure of the giant kelp Macrocystis pyrifera in Aotearoa/New Zealand","authors":"Duong Minh Le, Matthew J. Desmond, Michael Knapp, Olga Kardailsky, Wendy A. Nelson, Giuseppe C. Zuccarello, Christopher D. Hepburn","doi":"10.1007/s00227-024-04397-3","DOIUrl":null,"url":null,"abstract":"<p>The giant kelp <i>Macrocystis pyrifera</i> is in global decline as a result of numerous stressors operating on both local and global scales. It is a species that holds significant value in terms of the ecosystem services that it provides and its application in aquaculture. In order to safeguard, restore and utilize this species, it is essential that a sound understanding of genetic structure and diversity is established at scales relevant to local management. Seven microsatellite markers were used to analyze 389 individuals from sites across eight geographical regions in New Zealand. While samples of <i>M. pyrifera</i> from the west coast of the South Island (Fiordland), were genetically isolated, the biogeographic separation of sites along the east coast of New Zealand, between Wellington and Stewart Island, remained unclear due to low genetic differentiation between regions. The greatest genetic diversity was seen in the southeast sites, whereas the northeast had the lowest diversity. This pattern is likely driven by the effects of stressors such as high sea surface temperature in these areas as well as oceanic circulation patterns. A key finding from this work was the significant genetic isolation, and therefore vulnerability of <i>M. pyrifera</i> in the Fiordland population, an area that is being subjected to more intense and longer lasting heatwave events.</p>","PeriodicalId":18365,"journal":{"name":"Marine Biology","volume":"2014 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00227-024-04397-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The giant kelp Macrocystis pyrifera is in global decline as a result of numerous stressors operating on both local and global scales. It is a species that holds significant value in terms of the ecosystem services that it provides and its application in aquaculture. In order to safeguard, restore and utilize this species, it is essential that a sound understanding of genetic structure and diversity is established at scales relevant to local management. Seven microsatellite markers were used to analyze 389 individuals from sites across eight geographical regions in New Zealand. While samples of M. pyrifera from the west coast of the South Island (Fiordland), were genetically isolated, the biogeographic separation of sites along the east coast of New Zealand, between Wellington and Stewart Island, remained unclear due to low genetic differentiation between regions. The greatest genetic diversity was seen in the southeast sites, whereas the northeast had the lowest diversity. This pattern is likely driven by the effects of stressors such as high sea surface temperature in these areas as well as oceanic circulation patterns. A key finding from this work was the significant genetic isolation, and therefore vulnerability of M. pyrifera in the Fiordland population, an area that is being subjected to more intense and longer lasting heatwave events.
期刊介绍:
Marine Biology publishes original and internationally significant contributions from all fields of marine biology. Special emphasis is given to articles which promote the understanding of life in the sea, organism-environment interactions, interactions between organisms, and the functioning of the marine biosphere.