The combined effects of temperature and exogenous bacterial sources on mortality in the Eastern oyster (Crassostrea virginica) under anoxia.

IF 2.1 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Marine Biology Pub Date : 2025-01-01 Epub Date: 2025-03-17 DOI:10.1007/s00227-025-04617-4
Laura Steeves, Keryn Winterburn, Michael R S Coffin, Jose M F Babarro, Thomas Guyondet, Luc A Comeau, Ramón Filgueira
{"title":"The combined effects of temperature and exogenous bacterial sources on mortality in the Eastern oyster (<i>Crassostrea virginica</i>) under anoxia.","authors":"Laura Steeves, Keryn Winterburn, Michael R S Coffin, Jose M F Babarro, Thomas Guyondet, Luc A Comeau, Ramón Filgueira","doi":"10.1007/s00227-025-04617-4","DOIUrl":null,"url":null,"abstract":"<p><p>In aquatic environments, low dissolved oxygen concentrations can result in depressed bivalve defense systems while promoting anaerobic bacterial growth, ultimately leading to increased bivalve mortality rates. Although the relationship between low oxygen availability and bivalve mortality has been previously examined, the mechanisms of mortality remain not well understood, limiting our ability to predict mass mortality events. In this study, the effect of anoxia (< 0.1 mgO<sub>2</sub>L<sup>-1</sup>) on adult oyster (<i>Crassostrea virginica</i>) mortality rates was explored experimentally using a factorial design, which included the effect of temperature (20°C vs. 28°C) combined with the presence/absence of an exogenous bacterial source (anoxic sediment vs. sterile sediment). Additionally, the effect on oyster mortality rate of removing vs. not removing deceased oysters from the experimental chambers was assessed. Oyster mortality rates, estimated as the time taken for half of the population to die (LT<sub>50</sub>) in anoxic conditions were significantly affected by temperature, the presence of anoxic sediment, and experimental execution (removing vs. not removing deceased oysters). Temperature had the greatest effect on mortality overall, with high temperatures resulting in increased mortality rates, whereas the presence of anoxic sediment only increased mortality rates consistently at high temperatures. The results of this study suggest that bacterial sources play a role in the mortality rate of oysters under warm anoxic conditions.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s00227-025-04617-4.</p>","PeriodicalId":18365,"journal":{"name":"Marine Biology","volume":"172 4","pages":"57"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913911/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00227-025-04617-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In aquatic environments, low dissolved oxygen concentrations can result in depressed bivalve defense systems while promoting anaerobic bacterial growth, ultimately leading to increased bivalve mortality rates. Although the relationship between low oxygen availability and bivalve mortality has been previously examined, the mechanisms of mortality remain not well understood, limiting our ability to predict mass mortality events. In this study, the effect of anoxia (< 0.1 mgO2L-1) on adult oyster (Crassostrea virginica) mortality rates was explored experimentally using a factorial design, which included the effect of temperature (20°C vs. 28°C) combined with the presence/absence of an exogenous bacterial source (anoxic sediment vs. sterile sediment). Additionally, the effect on oyster mortality rate of removing vs. not removing deceased oysters from the experimental chambers was assessed. Oyster mortality rates, estimated as the time taken for half of the population to die (LT50) in anoxic conditions were significantly affected by temperature, the presence of anoxic sediment, and experimental execution (removing vs. not removing deceased oysters). Temperature had the greatest effect on mortality overall, with high temperatures resulting in increased mortality rates, whereas the presence of anoxic sediment only increased mortality rates consistently at high temperatures. The results of this study suggest that bacterial sources play a role in the mortality rate of oysters under warm anoxic conditions.

Supplementary information: The online version contains supplementary material available at 10.1007/s00227-025-04617-4.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Biology
Marine Biology 生物-海洋与淡水生物学
CiteScore
4.20
自引率
8.30%
发文量
133
审稿时长
3-6 weeks
期刊介绍: Marine Biology publishes original and internationally significant contributions from all fields of marine biology. Special emphasis is given to articles which promote the understanding of life in the sea, organism-environment interactions, interactions between organisms, and the functioning of the marine biosphere.
期刊最新文献
Age, growth, and intrinsic sensitivity of Endangered Spinetail Devil Ray (Mobula mobular) and Bentfin Devil Ray (M. thurstoni) in the Indian Ocean. The combined effects of temperature and exogenous bacterial sources on mortality in the Eastern oyster (Crassostrea virginica) under anoxia. Collective exploitation of large prey by group foraging shapes aggregation and fitness of cnidarian polyps Reviewing theory, design, and analysis of tethering experiments to enhance our understanding of predation The complete mitochondrial genome of the extinct Caribbean monk seal (Neomonachus tropicalis) confirms its taxonomic position and the monophyly of the genus Neomonachus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1