Flower‐visitor and pollen‐load data provide complementary insight into species and individual network roles

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY Oikos Pub Date : 2024-02-20 DOI:10.1111/oik.10301
Alyssa R. Cirtwill, Helena Wirta, Riikka Kaartinen, Gavin Ballantyne, Graham N. Stone, Helen Cunnold, Mikko Tiusanen, Tomas Roslin
{"title":"Flower‐visitor and pollen‐load data provide complementary insight into species and individual network roles","authors":"Alyssa R. Cirtwill, Helena Wirta, Riikka Kaartinen, Gavin Ballantyne, Graham N. Stone, Helen Cunnold, Mikko Tiusanen, Tomas Roslin","doi":"10.1111/oik.10301","DOIUrl":null,"url":null,"abstract":"Most animal pollination results from plant–insect interactions, but how we perceive these interactions may differ with the sampling method adopted. The two most common methods are observations of visits by pollinators to plants and observations of pollen loads carried by insects. Each method could favour the detection of different species and interactions, and pollen load observations typically reveal more interactions per individual insect than visit observations. Moreover, while observations concern plant and insect individuals, networks are frequently analysed at the level of species. Although networks constructed using visitation and pollen‐load data have occasionally been compared in relatively specialised, bee‐dominated systems, it is not known how sampling methodology will affect our perception of how species (and individuals within species) interact in a more generalist system. Here we use a Diptera‐dominated high‐Arctic plant–insect community to explore how sampling approach shapes several measures of species' interactions (focusing on specialisation), and what we can learn about how the interactions of individuals relate to those of species. We found that species degrees, interaction strengths, and species motif roles were significantly correlated across the two method‐specific versions of the network. However, absolute differences in degrees and motif roles were greater than could be explained by the greater number of interactions per individual provided by the pollen‐load data. Thus, despite the correlations between species roles in networks built using visitation and pollen‐load data, we infer that these two perspectives yield fundamentally different summaries of the ways species fit into their communities. Further, individuals' roles generally predicted the species' overall role, but high variability among individuals means that species' roles cannot be used to predict those of particular individuals. These findings emphasize the importance of adopting a dual perspective on bipartite networks, as based on the different information inherent in insect visits and pollen loads.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.10301","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Most animal pollination results from plant–insect interactions, but how we perceive these interactions may differ with the sampling method adopted. The two most common methods are observations of visits by pollinators to plants and observations of pollen loads carried by insects. Each method could favour the detection of different species and interactions, and pollen load observations typically reveal more interactions per individual insect than visit observations. Moreover, while observations concern plant and insect individuals, networks are frequently analysed at the level of species. Although networks constructed using visitation and pollen‐load data have occasionally been compared in relatively specialised, bee‐dominated systems, it is not known how sampling methodology will affect our perception of how species (and individuals within species) interact in a more generalist system. Here we use a Diptera‐dominated high‐Arctic plant–insect community to explore how sampling approach shapes several measures of species' interactions (focusing on specialisation), and what we can learn about how the interactions of individuals relate to those of species. We found that species degrees, interaction strengths, and species motif roles were significantly correlated across the two method‐specific versions of the network. However, absolute differences in degrees and motif roles were greater than could be explained by the greater number of interactions per individual provided by the pollen‐load data. Thus, despite the correlations between species roles in networks built using visitation and pollen‐load data, we infer that these two perspectives yield fundamentally different summaries of the ways species fit into their communities. Further, individuals' roles generally predicted the species' overall role, but high variability among individuals means that species' roles cannot be used to predict those of particular individuals. These findings emphasize the importance of adopting a dual perspective on bipartite networks, as based on the different information inherent in insect visits and pollen loads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
访花者和花粉量数据提供了物种和个体网络作用的互补性洞察力
大多数动物授粉都是植物-昆虫相互作用的结果,但我们对这些相互作用的认识可能会因采用的取样方法而有所不同。最常见的两种方法是观察传粉昆虫对植物的访问和观察昆虫携带的花粉量。每种方法都有利于发现不同的物种和相互作用,而花粉量观测通常比访问观测更能揭示每只昆虫的相互作用。此外,观察结果涉及植物和昆虫个体,而网络则经常在物种水平上进行分析。虽然在相对专业化的、以蜜蜂为主的系统中,偶尔会对利用访问量和花粉量数据构建的网络进行比较,但目前还不清楚取样方法会如何影响我们对物种(以及物种内个体)在更普遍的系统中如何相互作用的认识。在这里,我们利用双翅目昆虫为主的高纬度北极植物-昆虫群落来探讨取样方法如何影响物种相互作用的几种测量方法(重点是特化),以及我们可以了解到的个体相互作用与物种相互作用之间的关系。我们发现,在两种方法特定版本的网络中,物种度、相互作用强度和物种主题作用都有显著的相关性。然而,由于花粉量数据提供的每个个体的交互作用数量更多,因此物种度和主题作用的绝对差异更大。因此,尽管物种角色在使用访问量数据和花粉量数据构建的网络中存在相关性,但我们推断,这两种观点对物种融入群落的方式产生了根本不同的总结。此外,个体的作用通常可以预测物种的整体作用,但个体间的高度变异性意味着物种的作用不能用来预测特定个体的作用。这些发现强调了基于昆虫访问和花粉量的不同内在信息,采用双重视角来看待双链网络的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oikos
Oikos 环境科学-生态学
CiteScore
6.20
自引率
5.90%
发文量
152
审稿时长
6-12 weeks
期刊介绍: Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.
期刊最新文献
Linking fine‐root diameter across root orders with climatic, biological and edaphic factors in the Northern Hemisphere Do plants respond to multi‐year disturbance rhythms and are we missing the beat? Importance of accounting for imperfect detection of plants in the estimation of population growth rates Landscape structures and stand attributes jointly regulate forest productivity Evolutionary cycles in a model of nestmate recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1