Food web complexity modulates environmental impacts on food chain length

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY Oikos Pub Date : 2024-02-20 DOI:10.1111/oik.10331
Shota Shibasaki, Akira Terui
{"title":"Food web complexity modulates environmental impacts on food chain length","authors":"Shota Shibasaki, Akira Terui","doi":"10.1111/oik.10331","DOIUrl":null,"url":null,"abstract":"The determinants of food chain length (FCL), a crucial aspect of biodiversity due to its effects on ecosystem functioning, have long been debated. Previous studies proposed resource availability, disturbance, and ecosystem size as environmental drivers. However, studies using stable isotope approaches have shown inconsistent results, indicating missing links between environmental drivers and FCL. Here, we hypothesized that species richness and motifs (i.e. three‐species subgraphs) modulated environmental effects on FCL. Combining empirical food webs with our <jats:italic>N</jats:italic>‐species food web model, we found that FCL disproportionately changed at low species richness, with saturation at high species richness. This functional response was essential to the interdependent effects of disturbance and ecosystem size in our model. Disturbance more strongly regulated FCL in smaller ecosystems, where species richness was low. Similarly, increasing ecosystem size enhanced FCL under strong, but not weak, disturbance regimes. Our study suggests that internal food web structure should deepen our understanding of how FCL changes over environments.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.10331","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The determinants of food chain length (FCL), a crucial aspect of biodiversity due to its effects on ecosystem functioning, have long been debated. Previous studies proposed resource availability, disturbance, and ecosystem size as environmental drivers. However, studies using stable isotope approaches have shown inconsistent results, indicating missing links between environmental drivers and FCL. Here, we hypothesized that species richness and motifs (i.e. three‐species subgraphs) modulated environmental effects on FCL. Combining empirical food webs with our N‐species food web model, we found that FCL disproportionately changed at low species richness, with saturation at high species richness. This functional response was essential to the interdependent effects of disturbance and ecosystem size in our model. Disturbance more strongly regulated FCL in smaller ecosystems, where species richness was low. Similarly, increasing ecosystem size enhanced FCL under strong, but not weak, disturbance regimes. Our study suggests that internal food web structure should deepen our understanding of how FCL changes over environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
食物网复杂性调节环境对食物链长度的影响
食物链长度(FCL)是生物多样性的一个重要方面,因其对生态系统功能的影响而备受争议。以前的研究提出,资源可用性、干扰和生态系统规模是环境驱动因素。然而,使用稳定同位素方法进行的研究结果并不一致,表明环境驱动因素与 FCL 之间缺乏联系。在此,我们假设物种丰富度和模式(即三物种子图)会调节环境对 FCL 的影响。通过将经验食物网与我们的N种食物网模型相结合,我们发现在物种丰富度较低时,FCL会发生不成比例的变化,而在物种丰富度较高时,FCL会达到饱和。在我们的模型中,这种功能反应对于干扰和生态系统规模的相互依存效应至关重要。在物种丰富度较低的较小生态系统中,干扰对 FCL 的调节作用更强。同样,在强干扰(而非弱干扰)机制下,生态系统规模的扩大会增强食物网的FCL。我们的研究表明,内部食物网结构应加深我们对FCL如何随环境变化的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oikos
Oikos 环境科学-生态学
CiteScore
6.20
自引率
5.90%
发文量
152
审稿时长
6-12 weeks
期刊介绍: Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.
期刊最新文献
Linking fine‐root diameter across root orders with climatic, biological and edaphic factors in the Northern Hemisphere Do plants respond to multi‐year disturbance rhythms and are we missing the beat? Importance of accounting for imperfect detection of plants in the estimation of population growth rates Landscape structures and stand attributes jointly regulate forest productivity Evolutionary cycles in a model of nestmate recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1