Amalur: The Convergence of Data Integration and Machine Learning

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-01-23 DOI:10.1109/TKDE.2024.3357389
Ziyu Li;Wenbo Sun;Danning Zhan;Yan Kang;Lydia Chen;Alessandro Bozzon;Rihan Hai
{"title":"Amalur: The Convergence of Data Integration and Machine Learning","authors":"Ziyu Li;Wenbo Sun;Danning Zhan;Yan Kang;Lydia Chen;Alessandro Bozzon;Rihan Hai","doi":"10.1109/TKDE.2024.3357389","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) training data is often scattered across disparate collections of datasets, called \n<italic>data silos</i>\n. This fragmentation poses a major challenge for data-intensive ML applications: integrating and transforming data residing in different sources demand a lot of manual work and computational resources. With data privacy constraints, data often cannot leave the premises of data silos; hence model training should proceed in a decentralized manner. In this work, we present a vision of bridging traditional data integration (DI) techniques with the requirements of modern machine learning systems. We explore the possibilities of utilizing metadata obtained from data integration processes for improving the effectiveness, efficiency, and privacy of ML models. Towards this direction, we analyze ML training and inference over data silos. Bringing data integration and machine learning together, we highlight new research opportunities from the aspects of systems, representations, factorized learning, and federated learning.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"7353-7367"},"PeriodicalIF":8.9000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10412203","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10412203/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) training data is often scattered across disparate collections of datasets, called data silos . This fragmentation poses a major challenge for data-intensive ML applications: integrating and transforming data residing in different sources demand a lot of manual work and computational resources. With data privacy constraints, data often cannot leave the premises of data silos; hence model training should proceed in a decentralized manner. In this work, we present a vision of bridging traditional data integration (DI) techniques with the requirements of modern machine learning systems. We explore the possibilities of utilizing metadata obtained from data integration processes for improving the effectiveness, efficiency, and privacy of ML models. Towards this direction, we analyze ML training and inference over data silos. Bringing data integration and machine learning together, we highlight new research opportunities from the aspects of systems, representations, factorized learning, and federated learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿玛卢尔:数据整合与机器学习
机器学习(ML)的训练数据通常分散在不同的数据集(称为数据孤岛)中。这种分散性给数据密集型 ML 应用程序带来了重大挑战:整合和转换不同来源的数据需要大量的人工工作和计算资源。由于数据隐私的限制,数据往往不能离开数据孤岛的前提;因此,模型训练应以分散的方式进行。在这项工作中,我们提出了将传统数据集成(DI)技术与现代机器学习系统的要求相结合的设想。我们探索了利用从数据集成过程中获得的元数据来提高机器学习模型的有效性、效率和隐私性的可能性。为此,我们分析了数据孤岛上的机器学习训练和推理。将数据集成和机器学习结合在一起,我们从系统、表示、因子化学习和联合学习等方面强调了新的研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
SE Factual Knowledge in Frozen Giant Code Model: A Study on FQN and Its Retrieval Online Dynamic Hybrid Broad Learning System for Real-Time Safety Assessment of Dynamic Systems Iterative Soft Prompt-Tuning for Unsupervised Domain Adaptation A Derivative Topic Dissemination Model Based on Representation Learning and Topic Relevance L-ASCRA: A Linearithmic Time Approximate Spectral Clustering Algorithm Using Topologically-Preserved Representatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1