{"title":"Iterative Soft Prompt-Tuning for Unsupervised Domain Adaptation","authors":"Yi Zhu;Shuqin Wang;Jipeng Qiang;Xindong Wu","doi":"10.1109/TKDE.2024.3483903","DOIUrl":null,"url":null,"abstract":"Unsupervised domain adaptation aims to facilitate learning tasks in unlabeled target domain with knowledge in the related source domain, which has achieved awesome performance with the pre-trained language models (PLMs). Recently, inspired by GPT, the prompt-tuning model has been widely explored in stimulating rich knowledge in PLMs for language understanding. However, existing prompt-tuning methods still directly applied the model that was learned in the source domain into the target domain to minimize the discrepancy between different domains, e.g., the prompts or the template are trained separately to learn embeddings for transferring to the target domain, which is actually the intuition of end-to-end deep-based approach. In this paper, we propose an Iterative Soft Prompt-Tuning method (ItSPT) for better unsupervised domain adaptation. On the one hand, the prompt-tuning model learned in the source domain is converted into an iterative model to find the true label information in the target domain, the domain adaptation method is then regarded as a few-shot learning task. On the other hand, instead of hand-crafted templates, ItSPT adopts soft prompts for both considering the automatic template generation and classification performance. Experiments on both English and Chinese datasets demonstrate that our method surpasses the performance of SOTA methods.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"8580-8592"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10723770/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Unsupervised domain adaptation aims to facilitate learning tasks in unlabeled target domain with knowledge in the related source domain, which has achieved awesome performance with the pre-trained language models (PLMs). Recently, inspired by GPT, the prompt-tuning model has been widely explored in stimulating rich knowledge in PLMs for language understanding. However, existing prompt-tuning methods still directly applied the model that was learned in the source domain into the target domain to minimize the discrepancy between different domains, e.g., the prompts or the template are trained separately to learn embeddings for transferring to the target domain, which is actually the intuition of end-to-end deep-based approach. In this paper, we propose an Iterative Soft Prompt-Tuning method (ItSPT) for better unsupervised domain adaptation. On the one hand, the prompt-tuning model learned in the source domain is converted into an iterative model to find the true label information in the target domain, the domain adaptation method is then regarded as a few-shot learning task. On the other hand, instead of hand-crafted templates, ItSPT adopts soft prompts for both considering the automatic template generation and classification performance. Experiments on both English and Chinese datasets demonstrate that our method surpasses the performance of SOTA methods.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.