An Integration visual navigation algorithm for urban air mobility

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data Research Pub Date : 2024-02-23 DOI:10.1016/j.bdr.2024.100447
Yandong Li, Bo Jiang, Long Zeng, Chenglong Li
{"title":"An Integration visual navigation algorithm for urban air mobility","authors":"Yandong Li,&nbsp;Bo Jiang,&nbsp;Long Zeng,&nbsp;Chenglong Li","doi":"10.1016/j.bdr.2024.100447","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an integration visual navigation algorithm called PnP-ORBSLAM for UAV position estimation in Urban Air Mobility (UAM). ORBSLAM is a popular and benchmark algorithm for vision based navigation applications. The proposed method improve the performance of ORBSLAM by adding a post-processing marker recognition phase to the model. Based on the features extracted from the markers, PnP algorithm is introduced to estimate the position of the monocular camera. The position estimation accuracy of the UAV is supposed to be improved by adding the position information of the camera to the model. Experiment is carried out based on Airsim simulation platform. Results show that the PnP-ORBSLAM algorithm can improve the three-dimensional accuracy by a margin of 5.38 % compared with ORBSLAM. In addition, the process speed of the proposed method can reach about 28 frames per second. It means that the PnP-ORBSLAM algorithm can work in real-time.</p></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"36 ","pages":"Article 100447"},"PeriodicalIF":3.5000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000236","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an integration visual navigation algorithm called PnP-ORBSLAM for UAV position estimation in Urban Air Mobility (UAM). ORBSLAM is a popular and benchmark algorithm for vision based navigation applications. The proposed method improve the performance of ORBSLAM by adding a post-processing marker recognition phase to the model. Based on the features extracted from the markers, PnP algorithm is introduced to estimate the position of the monocular camera. The position estimation accuracy of the UAV is supposed to be improved by adding the position information of the camera to the model. Experiment is carried out based on Airsim simulation platform. Results show that the PnP-ORBSLAM algorithm can improve the three-dimensional accuracy by a margin of 5.38 % compared with ORBSLAM. In addition, the process speed of the proposed method can reach about 28 frames per second. It means that the PnP-ORBSLAM algorithm can work in real-time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于城市空中机动的集成视觉导航算法
本文提出了一种名为 PnP-ORBSLAM 的集成视觉导航算法,用于城市空中机动(UAM)中的无人机位置估计。ORBSLAM 是基于视觉的导航应用中一种流行的基准算法。所提出的方法通过在模型中添加后处理标记识别阶段来提高 ORBSLAM 的性能。根据从标记中提取的特征,引入 PnP 算法来估计单目摄像头的位置。通过在模型中加入相机的位置信息,无人机的位置估计精度应该会得到提高。实验基于 Airsim 仿真平台进行。结果表明,PnP-ORBSLAM 算法的三维精度比 ORBSLAM 算法提高了 5.38%。此外,所提方法的处理速度可达到每秒约 28 帧。这意味着 PnP-ORBSLAM 算法可以实时工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data Research
Big Data Research Computer Science-Computer Science Applications
CiteScore
8.40
自引率
3.00%
发文量
0
期刊介绍: The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic. The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.
期刊最新文献
Modeling meaningful volatility events to classify monetary policy announcements Predicting option prices: From the Black-Scholes model to machine learning methods Editorial Board Efficient training: Federated learning cost analysis Improved Tesseract optical character recognition performance on Thai document datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1