Liangliang Lv;Qingrui Yang;Haolin Li;Zhaoxun Wang;Quanning Li;Xuejiao Chen;Menglun Zhang;Wei Pang
{"title":"A Q-factor Boost Strategy for High-Order Width-Extensional Mode MEMS Resonators by Varied Unit Length","authors":"Liangliang Lv;Qingrui Yang;Haolin Li;Zhaoxun Wang;Quanning Li;Xuejiao Chen;Menglun Zhang;Wei Pang","doi":"10.1109/JMEMS.2024.3355400","DOIUrl":null,"url":null,"abstract":"It is a longstanding issue that high-order width-extensional (WE) piezoelectric microelectromechanical system (MEMS) resonators suffer low quality factors (Q-factors). In this study, it is observed that the mode distortion occurs in each unit when it couples with each other to constitute the high-order WE-mode resonator, leading to a decreased Q-factor. Based on this finding, we propose a new Q-factor boost strategy by improving mode matching degree between adjacent units from the view of dividing the high-order resonator into units. Both simulation and experimental results show a significant improvement in mode matching degree between adjacent units with varied unit length. Resonator’s Q-factor measured in air improved by 53% compared with the conventional resonator with constant unit length. It is believed that the proposed strategy could apply to other WE-mode MEMS resonators with different orders or dimensions; and Q-factor can be further improved by combining the proposed method with traditional energy reflection methods. [2023-0201]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 2","pages":"130-132"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10416723/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
It is a longstanding issue that high-order width-extensional (WE) piezoelectric microelectromechanical system (MEMS) resonators suffer low quality factors (Q-factors). In this study, it is observed that the mode distortion occurs in each unit when it couples with each other to constitute the high-order WE-mode resonator, leading to a decreased Q-factor. Based on this finding, we propose a new Q-factor boost strategy by improving mode matching degree between adjacent units from the view of dividing the high-order resonator into units. Both simulation and experimental results show a significant improvement in mode matching degree between adjacent units with varied unit length. Resonator’s Q-factor measured in air improved by 53% compared with the conventional resonator with constant unit length. It is believed that the proposed strategy could apply to other WE-mode MEMS resonators with different orders or dimensions; and Q-factor can be further improved by combining the proposed method with traditional energy reflection methods. [2023-0201]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.