{"title":"Electrowetting Ionic Liquid Flow Controller","authors":"Jonathan MacArthur;Paulo Lozano","doi":"10.1109/JMEMS.2024.3351470","DOIUrl":null,"url":null,"abstract":"Ionic liquids are used in a variety of chemical, microfluidic, aerospace, and other diverse applications. Microfluidic applications often require a small footprint and manage small volumes of fluid in their channels on the order of microliters or less. Many microfluidic devices utilize external pressure systems or mechanical pumping mechanisms to control the flow of fluids through the device, inherently limiting the footprint of the device. Open microchannel microfluidics have at least one fluid boundary open to the environment instead of a channel wall surface confining liquid completely. A promising micro-scale fluid system for spacecraft propulsion applications is the electrospray thruster. Electrospray thrusters utilizes ionic liquids for propellant whereby ions are accelerated via electric field for thrust. These propulsion systems currently have few suitably sized active propellant management options, leaving the overall system less robust than desired. For use as a micro-scale ionic liquid propellant management device in these small electrospray spacecraft propulsion systems, a solid-state flow controller is proposed. By including an electrowetting region within an open microchannel fluid path, a change in liquid pressure can be achieved via electrowetting effect so long as contact angle is free to change within the electrowetting channel region. Various open microchannels are fabricated in silicon and tested, showing that rounding of the open microchannel ledges prevents liquid pinning along the channel, allowing for contact angle changes via electrowetting to manifest a change in pressure within the liquid in the channel, demonstrating a solid-state ionic liquid flow controller for use in electrospray propulsion systems. [2023-0191]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 2","pages":"248-259"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10403643/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ionic liquids are used in a variety of chemical, microfluidic, aerospace, and other diverse applications. Microfluidic applications often require a small footprint and manage small volumes of fluid in their channels on the order of microliters or less. Many microfluidic devices utilize external pressure systems or mechanical pumping mechanisms to control the flow of fluids through the device, inherently limiting the footprint of the device. Open microchannel microfluidics have at least one fluid boundary open to the environment instead of a channel wall surface confining liquid completely. A promising micro-scale fluid system for spacecraft propulsion applications is the electrospray thruster. Electrospray thrusters utilizes ionic liquids for propellant whereby ions are accelerated via electric field for thrust. These propulsion systems currently have few suitably sized active propellant management options, leaving the overall system less robust than desired. For use as a micro-scale ionic liquid propellant management device in these small electrospray spacecraft propulsion systems, a solid-state flow controller is proposed. By including an electrowetting region within an open microchannel fluid path, a change in liquid pressure can be achieved via electrowetting effect so long as contact angle is free to change within the electrowetting channel region. Various open microchannels are fabricated in silicon and tested, showing that rounding of the open microchannel ledges prevents liquid pinning along the channel, allowing for contact angle changes via electrowetting to manifest a change in pressure within the liquid in the channel, demonstrating a solid-state ionic liquid flow controller for use in electrospray propulsion systems. [2023-0191]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.