Accurate Modeling of GaN HEMTs Oriented to Analysis of Kink Effects in S22 and h21: An Effective Machine Learning Approach

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of the Electron Devices Society Pub Date : 2024-02-12 DOI:10.1109/JEDS.2024.3364809
Zegen Zhu;Gianni Bosi;Antonio Raffo;Giovanni Crupi;Jialin Cai
{"title":"Accurate Modeling of GaN HEMTs Oriented to Analysis of Kink Effects in S22 and h21: An Effective Machine Learning Approach","authors":"Zegen Zhu;Gianni Bosi;Antonio Raffo;Giovanni Crupi;Jialin Cai","doi":"10.1109/JEDS.2024.3364809","DOIUrl":null,"url":null,"abstract":"In this work, for the first time, a machine learning behavioral modeling methodology based on gate recurrent unit (GRU) is developed and used to model and then analyze the kink effects (KEs) in the output reflection coefficient \n<inline-formula> <tex-math>$(S_{22})$ </tex-math></inline-formula>\n and the short-circuit current gain \n<inline-formula> <tex-math>$(h_{21})$ </tex-math></inline-formula>\n of an advanced microwave transistor. The device under test (DUT) is a 0.25-\n<inline-formula> <tex-math>$\\mu \\text{m}$ </tex-math></inline-formula>\n gallium nitride (GaN) high electron mobility transistor (HEMT) on silicon carbide (SiC) substrate, which has a large gate periphery of 1.5 mm. The scattering (S-) parameters of the DUT are measured at a frequency up to 65 GHz and at an ambient temperature up to 200°C. The proposed model can accurately reproduce the KEs in \n<inline-formula> <tex-math>$S_{22}$ </tex-math></inline-formula>\n and in \n<inline-formula> <tex-math>$h_{21}$ </tex-math></inline-formula>\n, enabling an effective analysis of their dependence on the operating conditions, bias point and ambient temperature. It is worth noticing that the proposed transistor model shows also good performance in both interpolation and extrapolation test.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10433010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10433010/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, for the first time, a machine learning behavioral modeling methodology based on gate recurrent unit (GRU) is developed and used to model and then analyze the kink effects (KEs) in the output reflection coefficient $(S_{22})$ and the short-circuit current gain $(h_{21})$ of an advanced microwave transistor. The device under test (DUT) is a 0.25- $\mu \text{m}$ gallium nitride (GaN) high electron mobility transistor (HEMT) on silicon carbide (SiC) substrate, which has a large gate periphery of 1.5 mm. The scattering (S-) parameters of the DUT are measured at a frequency up to 65 GHz and at an ambient temperature up to 200°C. The proposed model can accurately reproduce the KEs in $S_{22}$ and in $h_{21}$ , enabling an effective analysis of their dependence on the operating conditions, bias point and ambient temperature. It is worth noticing that the proposed transistor model shows also good performance in both interpolation and extrapolation test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向 S22 和 h21 扭结效应分析的 GaN HEMT 准确建模:一种有效的机器学习方法
本研究首次开发了一种基于栅递归单元(GRU)的机器学习行为建模方法,并将其用于建模和分析先进微波晶体管输出反射系数$(S_{22})$和短路电流增益$(h_{21})$中的扭结效应(KEs)。被测器件(DUT)是碳化硅(SiC)衬底上的 0.25- $\mu \text{m}$氮化镓(GaN)高电子迁移率晶体管(HEMT),具有 1.5 mm 的大栅极外围。在高达 65 GHz 的频率和高达 200°C 的环境温度下测量了 DUT 的散射 (S-) 参数。所提出的模型能够准确再现 $S_{22}$ 和 $h_{21}$ 中的 KEs,从而能够有效分析它们对工作条件、偏置点和环境温度的依赖性。值得注意的是,所提出的晶体管模型在内插法和外推法测试中也表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
期刊最新文献
Kr-Plasma Process for Conductance Control of MFSFET With FeND-HfO2 Gate Insulator Fully Integrated GaN-on-Silicon Power-Rail ESD Clamp Circuit Without Transient Leakage Current During Normal Power-on Operation Combining Intelligence With Rules for Device Modeling: Approximating the Behavior of AlGaN/GaN HEMTs Using a Hybrid Neural Network and Fuzzy Logic Inference System Impact of Strain on Sub-3 nm Gate-all-Around CMOS Logic Circuit Performance Using a Neural Compact Modeling Approach A Novel Parallel In-Memory Logic Array Based on Programmable Diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1