Side Yang , Danfeng Li , Xin Yu , Mohan Bai , Huike Ye , Yang Sun , Lixia Zhao , Yali Chen , Xiaojing Li , Yongtao Li
{"title":"Response of biocurrent conduction to soil microenvironment","authors":"Side Yang , Danfeng Li , Xin Yu , Mohan Bai , Huike Ye , Yang Sun , Lixia Zhao , Yali Chen , Xiaojing Li , Yongtao Li","doi":"10.1016/j.elecom.2024.107681","DOIUrl":null,"url":null,"abstract":"<div><p>The biocurrent generated by soil extracellular electron transfer (EET) partly drives biogeochemical cycles and controls soil quality. However, it is unclear how the soil abiotic and biotic conditions affect the biocurrent conduction. In this study, the response relationship of soil microenvironment and <em>in-situ</em> biocurrent was studied. The results showed that red soil exhibited the optimal electron transfer efficiency, as evidenced by the maximum current density and accumulated charge output, with increments of 56–93 % and 80–2800 %, respectively, compared with the other five types of soils. Soil physicochemical properties were the most important factor on the biocurrent generation, and further the quantity and bioavailability of dissolved organic matter, NH<sub>4</sub><sup>+</sup>-N content, and lower pH were predictive indicators for the exoelectrogenic processes of soils. In addition, the high soil biocurrent was likely determined by a complex synergistic network of the transformation of carbon and nitrogen, electroactive bacteria involving the functions of cell wall/membrane and cytochrome enzyme metabolism and transport related EET process. Overall, we provide an insight into the relationship among soil biocurrent conduction, physicochemical properties, bacteria community and metabolic function, and a support for bioelectrochemical technology application.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"161 ","pages":"Article 107681"},"PeriodicalIF":4.7000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000249/pdfft?md5=80a100beb8058b2265595c20d3e16031&pid=1-s2.0-S1388248124000249-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000249","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The biocurrent generated by soil extracellular electron transfer (EET) partly drives biogeochemical cycles and controls soil quality. However, it is unclear how the soil abiotic and biotic conditions affect the biocurrent conduction. In this study, the response relationship of soil microenvironment and in-situ biocurrent was studied. The results showed that red soil exhibited the optimal electron transfer efficiency, as evidenced by the maximum current density and accumulated charge output, with increments of 56–93 % and 80–2800 %, respectively, compared with the other five types of soils. Soil physicochemical properties were the most important factor on the biocurrent generation, and further the quantity and bioavailability of dissolved organic matter, NH4+-N content, and lower pH were predictive indicators for the exoelectrogenic processes of soils. In addition, the high soil biocurrent was likely determined by a complex synergistic network of the transformation of carbon and nitrogen, electroactive bacteria involving the functions of cell wall/membrane and cytochrome enzyme metabolism and transport related EET process. Overall, we provide an insight into the relationship among soil biocurrent conduction, physicochemical properties, bacteria community and metabolic function, and a support for bioelectrochemical technology application.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.