Xingxing Wu, Yufan Xia, Shuang Chen, Zhen Luo, Xuan Zhang, Muhammad Wakil Shahzad, Ben Bin Xu, Hongge Pan, Mi Yan, Yinzhu Jiang
{"title":"Boosting the performance of aqueous zinc-ion battery by regulating the electrolyte solvation structure","authors":"Xingxing Wu, Yufan Xia, Shuang Chen, Zhen Luo, Xuan Zhang, Muhammad Wakil Shahzad, Ben Bin Xu, Hongge Pan, Mi Yan, Yinzhu Jiang","doi":"10.1002/eom2.12438","DOIUrl":null,"url":null,"abstract":"<p>The practical implementation of aqueous Zn-ion batteries (ZIBs) for large-scale energy storage is impeded by the challenges of water-induced parasitic reactions and uncontrolled dendrite growth. Herein, we propose a strategy to regulate both anions and cations of electrolyte solvation structures to address above challenges, by introducing an electrolyte additive of 3-hydroxy-4-(trimethylammonio)butyrate (HTMAB) into ZnSO<sub>4</sub> electrolyte. Consequently, the deposition of Zn is significantly improved leading to a highly reversible Zn anode with paralleled texture. The Zn/Zn cells with ZnSO<sub>4</sub>/HTMAB exhibit outstanding cycling performance, showcasing a lifespan exceeding 7500 h and an exceptionally high accumulative capacity of 16.47 Ah cm<sup>−2</sup>. Zn/NaV<sub>3</sub>O<sub>8</sub>·1.5H<sub>2</sub>O full cell displays a specific capacity of ~130 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> maintaining a capacity retention of 93% after 2000 cycles. This work highlights the regulation on both cations and anions of electrolyte solvation structures in optimizing interfacial stability during Zn plating/stripping for high performance ZIBs.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 3","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12438","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The practical implementation of aqueous Zn-ion batteries (ZIBs) for large-scale energy storage is impeded by the challenges of water-induced parasitic reactions and uncontrolled dendrite growth. Herein, we propose a strategy to regulate both anions and cations of electrolyte solvation structures to address above challenges, by introducing an electrolyte additive of 3-hydroxy-4-(trimethylammonio)butyrate (HTMAB) into ZnSO4 electrolyte. Consequently, the deposition of Zn is significantly improved leading to a highly reversible Zn anode with paralleled texture. The Zn/Zn cells with ZnSO4/HTMAB exhibit outstanding cycling performance, showcasing a lifespan exceeding 7500 h and an exceptionally high accumulative capacity of 16.47 Ah cm−2. Zn/NaV3O8·1.5H2O full cell displays a specific capacity of ~130 mAh g−1 at 5 A g−1 maintaining a capacity retention of 93% after 2000 cycles. This work highlights the regulation on both cations and anions of electrolyte solvation structures in optimizing interfacial stability during Zn plating/stripping for high performance ZIBs.