Event-triggered error-constrained switching guidance-based marine surface vessel path-following control and collision avoidance

Ang Li, Zhipeng Shen, Hongbo Bi, Haomiao Yu
{"title":"Event-triggered error-constrained switching guidance-based marine surface vessel path-following control and collision avoidance","authors":"Ang Li, Zhipeng Shen, Hongbo Bi, Haomiao Yu","doi":"10.1177/09596518241227491","DOIUrl":null,"url":null,"abstract":"For marine surface vessel with input saturation, model uncertainties, and unknown disturbances, this article proposes a path-following control and collision avoidance method based on error-constrained event-triggered switching line-of-sight guidance. This method can autonomously switch between path-following and collision avoidance modes, constrain the position and heading errors to satisfy safe navigation in confined waters, and reduce the computational frequency of the controller and the mechanical wear of the actuator. In the path-following mode, we construct an asymmetric modified barrier Lyapunov function to constrain the position errors and use the relative threshold event-triggered mechanism to reduce the update frequency of the guidance heading angle. In the collision avoidance mode, static or dynamic obstacles are avoided through the response of collision avoidance radius. In the heading and velocity control design, asymmetric modified barrier Lyapunov function and event-triggered mechanism are also applied, so that the marine surface vessel can track the guided heading angle and meet the heading error-constrained while reducing the update frequency of the controller. The adaptive auxiliary systems are used to compensate for the input saturation, and radial basis function neural networks and adaptive laws are used to approximate the model uncertainties and composite disturbances. According to the Lyapunov stability theory, all signals are semi-globally uniformly ultimately bounded and the Zeno phenomenon is avoided. Finally, the comparative experiment shows the superiority of the designed control strategy.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":"44 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/09596518241227491","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

For marine surface vessel with input saturation, model uncertainties, and unknown disturbances, this article proposes a path-following control and collision avoidance method based on error-constrained event-triggered switching line-of-sight guidance. This method can autonomously switch between path-following and collision avoidance modes, constrain the position and heading errors to satisfy safe navigation in confined waters, and reduce the computational frequency of the controller and the mechanical wear of the actuator. In the path-following mode, we construct an asymmetric modified barrier Lyapunov function to constrain the position errors and use the relative threshold event-triggered mechanism to reduce the update frequency of the guidance heading angle. In the collision avoidance mode, static or dynamic obstacles are avoided through the response of collision avoidance radius. In the heading and velocity control design, asymmetric modified barrier Lyapunov function and event-triggered mechanism are also applied, so that the marine surface vessel can track the guided heading angle and meet the heading error-constrained while reducing the update frequency of the controller. The adaptive auxiliary systems are used to compensate for the input saturation, and radial basis function neural networks and adaptive laws are used to approximate the model uncertainties and composite disturbances. According to the Lyapunov stability theory, all signals are semi-globally uniformly ultimately bounded and the Zeno phenomenon is avoided. Finally, the comparative experiment shows the superiority of the designed control strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于事件触发误差约束切换制导的海洋水面舰艇路径跟踪控制与避碰
针对具有输入饱和、模型不确定性和未知干扰的海洋水面舰艇,本文提出了一种基于误差约束事件触发切换视线制导的路径跟随控制和避碰方法。该方法可以在路径跟随和避免碰撞模式之间自主切换,约束位置和航向误差以满足在狭窄水域的安全航行,并降低控制器的计算频率和执行器的机械磨损。在路径跟随模式下,我们构建了一个非对称修正屏障 Lyapunov 函数来约束位置误差,并使用相对阈值事件触发机制来降低制导航向角的更新频率。在避撞模式下,通过避撞半径的响应来避开静态或动态障碍物。在航向和速度控制设计中,还应用了非对称修正屏障 Lyapunov 函数和事件触发机制,使海洋水面舰艇能够跟踪制导航向角,满足航向误差约束,同时降低控制器的更新频率。自适应辅助系统用于补偿输入饱和,径向基函数神经网络和自适应律用于近似模型不确定性和复合干扰。根据 Lyapunov 稳定性理论,所有信号都是半全局均匀终界的,避免了芝诺现象。最后,对比实验表明了所设计控制策略的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
18.80%
发文量
99
审稿时长
4.2 months
期刊介绍: Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies. "It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.
期刊最新文献
Hybrid-triggered H∞ control for Markov jump systems with quantizations and hybrid attacks Design optimization and simulation of a 3D printed cable-driven continuum robot using IKM-ANN and nTop software Optimal course tracking control of USV with input dead zone based on adaptive fuzzy dynamic programing Development of new framework for order abatement and control design strategy Unwinding-free composite full-order sliding-mode control for attitude tracking of flexible spacecraft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1