Alison Pereira, Marie-Hélène Moncel, Sébastien Nomade, Pierre Voinchet, Qingfeng Shao, Christophe Falguères, David Lefèvre, Jean Paul Raynal, Vincent Scao, Marcello Piperno, Suzanne Simone, Jean Jacques Bahain
{"title":"Update and synthesis of the available archaeological and geochronological data for the Lower Paleolithic site of Loreto at Venosa (Basilicata, Italy)","authors":"Alison Pereira, Marie-Hélène Moncel, Sébastien Nomade, Pierre Voinchet, Qingfeng Shao, Christophe Falguères, David Lefèvre, Jean Paul Raynal, Vincent Scao, Marcello Piperno, Suzanne Simone, Jean Jacques Bahain","doi":"10.1017/qua.2023.71","DOIUrl":null,"url":null,"abstract":"In the Basilicata region, located in southern Italy and known for hosting among the first occurrences of the Acheulean culture in southwestern Europe, the Lower Paleolithic site of Loreto at Venosa is located less than a kilometer from the emblematic site of Notarchirico and less than 25 km from Cimitero di Atella. The Loreto site has not been studied as thoroughly as the two other sites and, although geological investigations have been carried out in the Venosa basin, no direct numerical dating has ever been published for the three archaeological levels brought to light during the excavation campaigns. We present a multi-method geochronological approach combining ESR/U-series, ESR, and <jats:sup>40</jats:sup>Ar/<jats:sup>39</jats:sup>Ar permitting to refine the age of the most ancient archaeological level (A) of the Loreto site. These data allow us to propose an MIS 13 age for this level, in accordance with previous hypotheses based on geological and paleontological data. We also propose a technical review of the lithic tools preserved in the collection of the National Archaeological Museum of Venosa to integrate Loreto in the evolution scheme of the European Acheulean techno-complex emergence and diffusion.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"66 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/qua.2023.71","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the Basilicata region, located in southern Italy and known for hosting among the first occurrences of the Acheulean culture in southwestern Europe, the Lower Paleolithic site of Loreto at Venosa is located less than a kilometer from the emblematic site of Notarchirico and less than 25 km from Cimitero di Atella. The Loreto site has not been studied as thoroughly as the two other sites and, although geological investigations have been carried out in the Venosa basin, no direct numerical dating has ever been published for the three archaeological levels brought to light during the excavation campaigns. We present a multi-method geochronological approach combining ESR/U-series, ESR, and 40Ar/39Ar permitting to refine the age of the most ancient archaeological level (A) of the Loreto site. These data allow us to propose an MIS 13 age for this level, in accordance with previous hypotheses based on geological and paleontological data. We also propose a technical review of the lithic tools preserved in the collection of the National Archaeological Museum of Venosa to integrate Loreto in the evolution scheme of the European Acheulean techno-complex emergence and diffusion.
期刊介绍:
Quaternary Research is an international journal devoted to the advancement of the interdisciplinary understanding of the Quaternary Period. We aim to publish articles of broad interest with relevance to more than one discipline, and that constitute a significant new contribution to Quaternary science. The journal’s scope is global, building on its nearly 50-year history in advancing the understanding of earth and human history through interdisciplinary study of the last 2.6 million years.