Dennis Erdogan;Zhang Peng Du;Stefan Jakubek;Franz Holzinger;Christian Mayr;Christoph Hametner
{"title":"Experimental Validation of Innovative Control Concepts for Powertrain Test Beds in Power Hardware-in-the-Loop Configuration","authors":"Dennis Erdogan;Zhang Peng Du;Stefan Jakubek;Franz Holzinger;Christian Mayr;Christoph Hametner","doi":"10.1109/OJIA.2024.3366524","DOIUrl":null,"url":null,"abstract":"Power hardware-in-the-loop (PHIL) testing has become indispensable for the rapid, modular, and cost-saving development of automotive components. This article focuses on PHIL tests composed of entire powertrains that exchange speed and torque signals with vehicle simulations. Previous studies pointed out the importance of promptly following the references from the virtual simulation environment to replicate realistic driving conditions and introduced control strategies to cope with the challenges associated with this setup. However, a comprehensive comparison of the different control strategies has not yet been carried out. To fill this gap, the concepts are first investigated in-depth in simulations and are then, rigorously validated on a state-of-the-art powertrain test bed under highly dynamic driving scenarios, including full-braking. Furthermore, an improvement of existing shaft torque control approaches, which are mainly based on feedforward control, is proposed to better compete with the other methods. The proposed extension shows higher resilience to low accuracy of torque actuators, while the other concepts exhibit greater robustness against time delays. The results from the direct comparisons are summarized and allow the appropriate selection of control strategies for specific use cases.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"128-142"},"PeriodicalIF":7.9000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10438857","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10438857/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Power hardware-in-the-loop (PHIL) testing has become indispensable for the rapid, modular, and cost-saving development of automotive components. This article focuses on PHIL tests composed of entire powertrains that exchange speed and torque signals with vehicle simulations. Previous studies pointed out the importance of promptly following the references from the virtual simulation environment to replicate realistic driving conditions and introduced control strategies to cope with the challenges associated with this setup. However, a comprehensive comparison of the different control strategies has not yet been carried out. To fill this gap, the concepts are first investigated in-depth in simulations and are then, rigorously validated on a state-of-the-art powertrain test bed under highly dynamic driving scenarios, including full-braking. Furthermore, an improvement of existing shaft torque control approaches, which are mainly based on feedforward control, is proposed to better compete with the other methods. The proposed extension shows higher resilience to low accuracy of torque actuators, while the other concepts exhibit greater robustness against time delays. The results from the direct comparisons are summarized and allow the appropriate selection of control strategies for specific use cases.
动力硬件在环(PHIL)测试已成为快速、模块化和节约成本的汽车零部件开发不可或缺的一部分。本文重点讨论由整个动力系统组成的 PHIL 测试,这些动力系统与车辆模拟交换速度和扭矩信号。以往的研究指出,必须及时遵循虚拟仿真环境中的参考数据来复制真实的驾驶条件,并引入了控制策略来应对与这种设置相关的挑战。然而,尚未对不同的控制策略进行全面比较。为了填补这一空白,我们首先在模拟环境中对这些概念进行了深入研究,然后在包括完全制动在内的高动态驾驶场景下,在最先进的动力总成试验台上进行了严格验证。此外,还对现有的轴扭矩控制方法(主要基于前馈控制)提出了改进建议,以更好地与其他方法竞争。所提出的扩展方案对扭矩执行器的低精度表现出更高的适应性,而其他概念则对时间延迟表现出更高的鲁棒性。对直接比较的结果进行了总结,以便为特定的使用案例选择适当的控制策略。