{"title":"RFID tag recognition model for Internet of Things for training room management","authors":"Shengqi Wu","doi":"10.1186/s13635-024-00154-7","DOIUrl":null,"url":null,"abstract":"With the rapid development of the Internet of Things and intelligent technology, the application of Radio Frequency Identification (RFID) technology in training room management is becoming increasingly widespread. An efficient and accurate RFID system can significantly improve the management efficiency and resource utilization of the training room, thereby improving teaching quality and reducing management costs. Although RFID technology has many advantages, there are still some problems in practical applications, such as label collision and recognition of unknown labels. These issues not only affect the performance of the system but may also cause interference with actual teaching and management. This study proposes a grouping-based bit arbitration query tree algorithm and anti-collision technology to solve label collisions and reduce label recognition time in the technology. A new unknown label recognition algorithm is also proposed to improve the recognition efficiency and accuracy of identifying new unknown labels. Related experiments have shown that the recognition accuracy of the algorithm designed this time is 95.86%. Compared with other algorithms, the number of idle time slots is the smallest. When the number of queries is 1000, the algorithm has 1842 queries, and the communication complexity is the best. When the number of unknown tags is 10,000, the actual accuracy rate is 95.642%. Compared with traditional recognition algorithms, the new unknown label recognition algorithm has a smaller frame length in the same label proportion and good recognition performance. On a theoretical level, the research content on RFID technology helps to improve and develop the basic theories of the Internet of Things and intelligent recognition technology and provides solutions and application technologies for equipment management and IoT applications in training rooms. On a practical level, the research results can provide specific guidance for the management of training rooms, help solve equipment management and safety maintenance problems in practical applications, and improve the management efficiency of training rooms.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"8 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-024-00154-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of the Internet of Things and intelligent technology, the application of Radio Frequency Identification (RFID) technology in training room management is becoming increasingly widespread. An efficient and accurate RFID system can significantly improve the management efficiency and resource utilization of the training room, thereby improving teaching quality and reducing management costs. Although RFID technology has many advantages, there are still some problems in practical applications, such as label collision and recognition of unknown labels. These issues not only affect the performance of the system but may also cause interference with actual teaching and management. This study proposes a grouping-based bit arbitration query tree algorithm and anti-collision technology to solve label collisions and reduce label recognition time in the technology. A new unknown label recognition algorithm is also proposed to improve the recognition efficiency and accuracy of identifying new unknown labels. Related experiments have shown that the recognition accuracy of the algorithm designed this time is 95.86%. Compared with other algorithms, the number of idle time slots is the smallest. When the number of queries is 1000, the algorithm has 1842 queries, and the communication complexity is the best. When the number of unknown tags is 10,000, the actual accuracy rate is 95.642%. Compared with traditional recognition algorithms, the new unknown label recognition algorithm has a smaller frame length in the same label proportion and good recognition performance. On a theoretical level, the research content on RFID technology helps to improve and develop the basic theories of the Internet of Things and intelligent recognition technology and provides solutions and application technologies for equipment management and IoT applications in training rooms. On a practical level, the research results can provide specific guidance for the management of training rooms, help solve equipment management and safety maintenance problems in practical applications, and improve the management efficiency of training rooms.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy