Analysis of Using the Light Pressure Effect to Drive Spacecraft under Complex Conditions

Chenxi Wang
{"title":"Analysis of Using the Light Pressure Effect to Drive Spacecraft under Complex Conditions","authors":"Chenxi Wang","doi":"10.61173/kf788778","DOIUrl":null,"url":null,"abstract":"Light pressure driving has attracted widespread attention due to its unique physical properties and potential in various scientific and technological fields. Due to the limitations of current technology and material levels, achieving a macro-level light pressure-driven approach in the short term is unrealistic. A wide range of research areas for light-pressure driving are focused on the micro level and suitable light-pressure materials. Under the current theoretical framework, a light pressure-driven spacecraft with suitable light sail materials is a highly competitive alternative for interstellar navigation. This article mainly simulates the process of light pressure-driven spacecraft accelerating to sub-light speed through laser irradiation on the Earth’s surface and decelerating the returning spacecraft. The article comprehensively considered factors such as laser frequency, sail size, and spacecraft mass during the simulation process and provided simulation results under appropriate conditions. Due to the significant relativistic effect of this process, this paper also considered the red shift and blue shift effects of relativistic light in the simulation process.","PeriodicalId":438278,"journal":{"name":"Science and Technology of Engineering, Chemistry and Environmental Protection","volume":"9 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Engineering, Chemistry and Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61173/kf788778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Light pressure driving has attracted widespread attention due to its unique physical properties and potential in various scientific and technological fields. Due to the limitations of current technology and material levels, achieving a macro-level light pressure-driven approach in the short term is unrealistic. A wide range of research areas for light-pressure driving are focused on the micro level and suitable light-pressure materials. Under the current theoretical framework, a light pressure-driven spacecraft with suitable light sail materials is a highly competitive alternative for interstellar navigation. This article mainly simulates the process of light pressure-driven spacecraft accelerating to sub-light speed through laser irradiation on the Earth’s surface and decelerating the returning spacecraft. The article comprehensively considered factors such as laser frequency, sail size, and spacecraft mass during the simulation process and provided simulation results under appropriate conditions. Due to the significant relativistic effect of this process, this paper also considered the red shift and blue shift effects of relativistic light in the simulation process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在复杂条件下利用光压效应驱动航天器的分析
光压驱动因其独特的物理特性和在各个科技领域的应用潜力而受到广泛关注。由于目前技术和材料水平的限制,在短期内实现宏观层面的光压驱动是不现实的。光压驱动的广泛研究领域集中在微观层面和合适的光压材料上。在现有的理论框架下,采用合适的光帆材料的光压驱动航天器是星际航行中极具竞争力的选择。本文主要模拟了光压驱动航天器在地球表面通过激光照射加速到亚光速并减速返回的过程。文章在模拟过程中综合考虑了激光频率、帆板尺寸、航天器质量等因素,并给出了适当条件下的模拟结果。由于这一过程具有明显的相对论效应,本文在模拟过程中还考虑了相对论光的红移和蓝移效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of EfficientNet in medical waste classification A Review of Research on Hospital Electronic Medical Record Management System Based on Cloud Computing Exploration of the Application of UAV Remote Sensing Technology in Engineering Surveying and Mapping Research on the Influencing factors of Heart Disease based on Binary Logistic Regression A review of YOLO-based traffic sign target detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1