Exploitation of carbon surface functionality toward additive‐free formation of gold nanocuboids suitable for sensitive assay of N‐acetylcysteine in pharmaceutical formulations

IF 2.9 Q2 ELECTROCHEMISTRY Electrochemical science advances Pub Date : 2024-02-15 DOI:10.1002/elsa.202300027
Eoghain Murphy, S. Guin, Alexandra Lapiy, A. Camisasca, Silvia Giordani, Eithne Dempsey
{"title":"Exploitation of carbon surface functionality toward additive‐free formation of gold nanocuboids suitable for sensitive assay of N‐acetylcysteine in pharmaceutical formulations","authors":"Eoghain Murphy, S. Guin, Alexandra Lapiy, A. Camisasca, Silvia Giordani, Eithne Dempsey","doi":"10.1002/elsa.202300027","DOIUrl":null,"url":null,"abstract":"Chemical additive and physical template‐free electrochemical methods to prepare carbon‐supported nanostructures of catalyst metals represent an emerging technology. Formation of the metal nano/microstructures depends not only on the electrochemical method/parameters but also on the nature of the underlying carbon material. Here, we present a comparative evolution of unevenly distributed coral‐like aggregates of nanocuboid‐shaped gold nanostructures (AuNCBs) on the oxidised form of boron, nitrogen‐doped carbon nanoonions (oxi‐B,N‐CNO) compared to evenly distributed bud‐like aggregates of cubic shaped gold nanostructures on bare glassy carbon electrode under a similar electrochemical approach. The synthesis method provided the best availability of the surface active sites, whereas the shape of the structures showed a direct influence of both outer‐sphere and inner‐sphere electron transfer reactions. The higher sensitivity of AuNCBs@oxi‐B,N‐CNO compared to individual components and bare carbon/gold electrodes toward the inner‐sphere oxidative reaction of N‐acetyl‐L‐cysteine (NAC) was exploited in order to develop an electrochemical assay method with sensitivity and linear dynamic range of (4.70 ± 0.25) × 10−4 C∙cm−2∙mM−1 and 0.2–2.5 mM, respectively in acetate buffer (pH 4.45). Furthermore, the sensor design was deployed in the quantitation of NAC in pharmaceutical preparations, resulting in 89%–106% recovery.","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/elsa.202300027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical additive and physical template‐free electrochemical methods to prepare carbon‐supported nanostructures of catalyst metals represent an emerging technology. Formation of the metal nano/microstructures depends not only on the electrochemical method/parameters but also on the nature of the underlying carbon material. Here, we present a comparative evolution of unevenly distributed coral‐like aggregates of nanocuboid‐shaped gold nanostructures (AuNCBs) on the oxidised form of boron, nitrogen‐doped carbon nanoonions (oxi‐B,N‐CNO) compared to evenly distributed bud‐like aggregates of cubic shaped gold nanostructures on bare glassy carbon electrode under a similar electrochemical approach. The synthesis method provided the best availability of the surface active sites, whereas the shape of the structures showed a direct influence of both outer‐sphere and inner‐sphere electron transfer reactions. The higher sensitivity of AuNCBs@oxi‐B,N‐CNO compared to individual components and bare carbon/gold electrodes toward the inner‐sphere oxidative reaction of N‐acetyl‐L‐cysteine (NAC) was exploited in order to develop an electrochemical assay method with sensitivity and linear dynamic range of (4.70 ± 0.25) × 10−4 C∙cm−2∙mM−1 and 0.2–2.5 mM, respectively in acetate buffer (pH 4.45). Furthermore, the sensor design was deployed in the quantitation of NAC in pharmaceutical preparations, resulting in 89%–106% recovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用碳表面功能形成无添加的纳米金立方体,适用于药物制剂中 N-乙酰半胱氨酸的灵敏检测
用化学添加剂和无物理模板电化学方法制备碳支撑的催化剂金属纳米结构是一项新兴技术。金属纳米/微结构的形成不仅取决于电化学方法/参数,还取决于底层碳材料的性质。在此,我们介绍了在类似的电化学方法下,纳米硼氮掺杂碳纳米管(oxi-B,N-CNO)氧化形式上不均匀分布的珊瑚状纳米立方体金纳米结构(AuNCBs)聚集体与裸玻璃碳电极上均匀分布的芽状立方体金纳米结构聚集体的比较演化。合成方法提供了最佳的表面活性位点,而结构的形状则直接影响到外层和内层的电子转移反应。与单个成分和裸碳/金电极相比,AuNCBs@oxi-B,N-CNO 对 N-乙酰-L-半胱氨酸(NAC)的内球氧化反应具有更高的灵敏度,利用这一优势,我们开发了一种电化学检测方法,在醋酸盐缓冲液(pH 4.45)中,灵敏度和线性动态范围分别为 (4.70 ± 0.25) × 10-4 C∙cm-2∙mM-1 和 0.2-2.5 mM。此外,该传感器还被用于药物制剂中 NAC 的定量分析,回收率为 89%-106%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
High‐Speed AFM Observation of Electrolytic Hydrogen Nanobubbles During Potential Scanning Electrochemical Contributions: Svante August Arrhenius (1859–1927) Electron Transfer Reaction Studies of Usnic Acid and Its Biosynthetic Precursor Methylphloroacetophenone Investigating the kinetics of small alcohol oxidation reactions using platinum supported on a doped niobium suboxide support Round‐robin test of all‐solid‐state battery with sulfide electrolyte assembly in coin‐type cell configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1