A drug delivery platform using engineered MUC1‐targeting exosomes enhances chemosensitivity and immunogenic cell death in pancreatic ductal adenocarcinoma

SmartMat Pub Date : 2024-02-15 DOI:10.1002/smm2.1279
Meng Guo, Chen Sun, Ruolan Liu, Jiao Jiang, Yuping Qian, Yulong Yang, Qinying Sun, Yuchao Dong, Yan Zhao, Yanfang Liu
{"title":"A drug delivery platform using engineered MUC1‐targeting exosomes enhances chemosensitivity and immunogenic cell death in pancreatic ductal adenocarcinoma","authors":"Meng Guo, Chen Sun, Ruolan Liu, Jiao Jiang, Yuping Qian, Yulong Yang, Qinying Sun, Yuchao Dong, Yan Zhao, Yanfang Liu","doi":"10.1002/smm2.1279","DOIUrl":null,"url":null,"abstract":"Exosomes, a specific subset of extracellular vesicles, have diverse functions in various biological processes. In the field of cancer research, there has been a growing interest in the potential of exosomes to act as versatile vehicles for targeted tumor imaging and therapy. In this study, we constructed a targeted delivery platform using hypoimmunogenic exosomes by genetically modifying β2‐microglobulin knocking‐out HEK‐293F cells to express a fusion protein, referred to as αMUC1‐Exo, which comprises the exosomal membrane‐enriched platelet‐derived growth factor receptor, intracellular nanoluciferase, and extracellular anti‐MUC1 single‐chain variable fragment. The findings of this study indicate that αMUC1‐Exos exhibited notable drug delivery properties toward MUC1‐positive pancreatic cancer cells, resulting in a substantial inhibition of tumor growth. Moreover, these exosomes demonstrated a high level of biosafety and the absence of any adverse effects. The application of engineered exosomes as a vehicle for drug delivery holds promise for enhancing the immunogenicity of neoplastic cells following treatment, thereby inducing antitumor immune memory in mice with intact immune systems, and also improving the response to anti‐PD1 therapy. This approach utilizing engineered exosomes for Gemcitabine administration holds promise as a potential strategy for overcoming drug resistance in pancreatic carcinoma thereby improving the overall treatment efficacy.","PeriodicalId":510850,"journal":{"name":"SmartMat","volume":"20 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exosomes, a specific subset of extracellular vesicles, have diverse functions in various biological processes. In the field of cancer research, there has been a growing interest in the potential of exosomes to act as versatile vehicles for targeted tumor imaging and therapy. In this study, we constructed a targeted delivery platform using hypoimmunogenic exosomes by genetically modifying β2‐microglobulin knocking‐out HEK‐293F cells to express a fusion protein, referred to as αMUC1‐Exo, which comprises the exosomal membrane‐enriched platelet‐derived growth factor receptor, intracellular nanoluciferase, and extracellular anti‐MUC1 single‐chain variable fragment. The findings of this study indicate that αMUC1‐Exos exhibited notable drug delivery properties toward MUC1‐positive pancreatic cancer cells, resulting in a substantial inhibition of tumor growth. Moreover, these exosomes demonstrated a high level of biosafety and the absence of any adverse effects. The application of engineered exosomes as a vehicle for drug delivery holds promise for enhancing the immunogenicity of neoplastic cells following treatment, thereby inducing antitumor immune memory in mice with intact immune systems, and also improving the response to anti‐PD1 therapy. This approach utilizing engineered exosomes for Gemcitabine administration holds promise as a potential strategy for overcoming drug resistance in pancreatic carcinoma thereby improving the overall treatment efficacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用工程化 MUC1 靶向外泌体的给药平台可增强胰腺导管腺癌的化疗敏感性和免疫性细胞死亡
外泌体是细胞外囊泡的一个特定子集,在各种生物过程中具有多种功能。在癌症研究领域,人们越来越关注外泌体作为靶向肿瘤成像和治疗的多功能载体的潜力。在本研究中,我们通过基因修饰敲除β2-微球蛋白的HEK-293F细胞,使其表达一种融合蛋白,即αMUC1-Exo,它由外泌体膜富集的血小板衍生生长因子受体、胞内纳米荧光素酶和胞外抗MUC1单链可变片段组成,从而构建了一种使用低免疫原性外泌体的靶向递送平台。这项研究的结果表明,αMUC1-外泌体对外MUC1阳性胰腺癌细胞具有显著的药物输送特性,从而大大抑制了肿瘤的生长。此外,这些外泌体表现出高度的生物安全性,没有任何不良反应。应用工程外泌体作为给药载体,有望增强治疗后肿瘤细胞的免疫原性,从而诱导免疫系统完好的小鼠产生抗肿瘤免疫记忆,并改善对抗PD1疗法的反应。这种利用工程外泌体给药吉西他滨的方法有望成为克服胰腺癌耐药性的潜在策略,从而提高整体治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reproducible and acid‐responsive Rhodamine B/PEG functioned nanographene oxide‐Au nanocomposites for surface‐enhanced Raman scattering sensing Toward highly sensitive, selective, and stable palladium‐based MEMS gas sensors for hydrogen energy security A sensory–neuromorphic interface capable of environmental perception, sensory coding, and biological stimuli Magnetic soft centirobot to mitigate biological threats TADF polymer enables over 20% EQE in solution‐processed green fluorescent OLEDs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1