Temporal Sequential-Artificial Neural Network Enhancements for Improved Smart Lighting Control

Aji Gautama Putrada, M. Abdurohman, Doan Perdana, Hilal Hudan Nuha
{"title":"Temporal Sequential-Artificial Neural Network Enhancements for Improved Smart Lighting Control","authors":"Aji Gautama Putrada, M. Abdurohman, Doan Perdana, Hilal Hudan Nuha","doi":"10.20895/infotel.v16i1.1025","DOIUrl":null,"url":null,"abstract":"Several previous studies have proposed a temporal sequential-artificial neural network (TS-ANN) to convert PIR Sensor movement data into presence data and improve the performance of smart lighting control. However, such a temporal-sequential forecasting concept has a curse of dimensionality problem. This study aims to proposes the application of principal component analysis with TS-ANN (PCA-TS-ANN) as an intelligent method for controlling smart lighting with low dimensions. We have primary data directly from a smart lighting implementation that utilizes PIR sensors. We apply cross-correlation to the original dataset to find the optimum time step. Then we discover the optimum TS-ANN based on selected tuning parameter values through PCC. We then design and compare scenarios involving the combination of TS-ANN and PCA. Finally, we evaluate these scenarios using the metrics Accuracy, Precision, Recall, F1− Score, and Delay. The results of this study are the PCA-TS-ANN model with Accuracy, Precision, Recall, and F1−Score value of 0.9993, 0.9997, 0.9994, and 0.9996 respectively. The PCA method reduces the TS-ANN features from 1200 features to 36 features. The model size has also decreased from 3534kB to 807kB. Our model has a simpler complexity with TS-ANN that the µ ± σ Delay is 0.27±0.06 ms versus 0.34±0.11 ms.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"24 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Infotel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20895/infotel.v16i1.1025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several previous studies have proposed a temporal sequential-artificial neural network (TS-ANN) to convert PIR Sensor movement data into presence data and improve the performance of smart lighting control. However, such a temporal-sequential forecasting concept has a curse of dimensionality problem. This study aims to proposes the application of principal component analysis with TS-ANN (PCA-TS-ANN) as an intelligent method for controlling smart lighting with low dimensions. We have primary data directly from a smart lighting implementation that utilizes PIR sensors. We apply cross-correlation to the original dataset to find the optimum time step. Then we discover the optimum TS-ANN based on selected tuning parameter values through PCC. We then design and compare scenarios involving the combination of TS-ANN and PCA. Finally, we evaluate these scenarios using the metrics Accuracy, Precision, Recall, F1− Score, and Delay. The results of this study are the PCA-TS-ANN model with Accuracy, Precision, Recall, and F1−Score value of 0.9993, 0.9997, 0.9994, and 0.9996 respectively. The PCA method reduces the TS-ANN features from 1200 features to 36 features. The model size has also decreased from 3534kB to 807kB. Our model has a simpler complexity with TS-ANN that the µ ± σ Delay is 0.27±0.06 ms versus 0.34±0.11 ms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于改进智能照明控制的时序人工神经网络增强功能
之前的一些研究提出了一种时序人工神经网络(TS-ANN),用于将 PIR 传感器的移动数据转换为存在数据,从而提高智能照明控制的性能。然而,这种时序预测概念存在维度诅咒问题。本研究旨在提出一种应用主成分分析与 TS-ANN (PCA-TS-ANN)的智能方法,用于低维度的智能照明控制。我们从利用 PIR 传感器的智能照明实施中直接获得了原始数据。我们对原始数据集进行交叉相关处理,以找到最佳时间步长。然后,我们根据所选的调整参数值,通过 PCC 发现最佳 TS-ANN 。然后,我们设计并比较涉及 TS-ANN 和 PCA 组合的方案。最后,我们使用准确度、精确度、召回率、F1-得分和延迟等指标对这些方案进行评估。研究结果表明,PCA-TS-ANN 模型的准确度、精确度、召回率和 F1 分数分别为 0.9993、0.9997、0.9994 和 0.9996。PCA 方法将 TS-ANN 特征从 1200 个特征减少到 36 个。模型大小也从 3534kB 减小到 807kB。与 TS-ANN 相比,我们的模型具有更简单的复杂性,µ ± σ 延迟为 0.27±0.06 ms,而 TS-ANN 为 0.34±0.11 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
47
审稿时长
6 weeks
期刊最新文献
Geo-Navigation in Museums: Augmented Reality Application in the Geological Museum Indonesia Cloud-based Metabase GIS Data Analysis Platform Quality Management According to ISO 9126 Indicators Solar Panel Power Generator with Automatic Charging using PWM System based on Microcontroller Weighted Voting Ensemble Learning of CNN Architectures for Diabetic Retinopathy Classification An Evaluation of Wireless Network Security with Penetration Testing Method at PT PLN UP2D S2JB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1