首页 > 最新文献

Jurnal Infotel最新文献

英文 中文
Cloud-based Metabase GIS Data Analysis Platform Quality Management According to ISO 9126 Indicators 基于云的元数据库 GIS 数据分析平台 根据 ISO 9126 指标进行质量管理
Pub Date : 2024-02-21 DOI: 10.20895/infotel.v16i1.1041
Rani Purbaningtyas, Moh Munih Dian Widianta, Mochammad Rifki Ulil Albaab
Platform metabase GIS data analysis based on the cloud that has been successfully developed is an alternative solution for spatial-text data analysis. The output of this cloud-based platform not only provides accurate textual information but also precise location representation of the objects. This research examines the quality of the developed platform based on ISO 9126, which consists of six main indicators: functionality, reliability, feasibility, efficiency, maintainability, and portability. Each indicator has different sub-indicators, totaling 22 sub-indicators. The quality assessment results indicate that the platform for metabase GIS data analysis based on the cloud exhibits excellent quality, with an average test result based on the ISO 9126 indicators reaching 93%.
已成功开发的基于云的元数据库 GIS 数据分析平台是空间文本数据分析的另一种解决方案。该云平台的输出不仅能提供准确的文本信息,还能提供对象的精确位置表示。本研究根据 ISO 9126 标准对所开发平台的质量进行了检验,该标准包括六大指标:功能性、可靠性、可行性、效率、可维护性和可移植性。每个指标都有不同的子指标,共计 22 个子指标。质量评估结果表明,基于云的元数据库 GIS 数据分析平台质量优异,基于 ISO 9126 指标的平均测试结果达到 93%。
{"title":"Cloud-based Metabase GIS Data Analysis Platform Quality Management According to ISO 9126 Indicators","authors":"Rani Purbaningtyas, Moh Munih Dian Widianta, Mochammad Rifki Ulil Albaab","doi":"10.20895/infotel.v16i1.1041","DOIUrl":"https://doi.org/10.20895/infotel.v16i1.1041","url":null,"abstract":"Platform metabase GIS data analysis based on the cloud that has been successfully developed is an alternative solution for spatial-text data analysis. The output of this cloud-based platform not only provides accurate textual information but also precise location representation of the objects. This research examines the quality of the developed platform based on ISO 9126, which consists of six main indicators: functionality, reliability, feasibility, efficiency, maintainability, and portability. Each indicator has different sub-indicators, totaling 22 sub-indicators. The quality assessment results indicate that the platform for metabase GIS data analysis based on the cloud exhibits excellent quality, with an average test result based on the ISO 9126 indicators reaching 93%.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"14 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140443131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar Panel Power Generator with Automatic Charging using PWM System based on Microcontroller 利用基于微控制器的 PWM 系统自动充电的太阳能电池板发电装置
Pub Date : 2024-02-21 DOI: 10.20895/infotel.v16i1.1075
Sulistyo Widodo, Erfiana Wahyuningsih, Y. G. Adhiyoga
Indonesia will become a net importer if it runs out of oil and gas reserves within the next 11 to 12 years if no alternative energy sources are developed. Therefore, there is a need to utilize alternative energy that is not dependent on oil or gas. One alternative energy is using solar light energy. This research designed a device that can convert the energy of sunlight into electrical energy and automatically store electrical energy in a battery with PWM (Pulse Width Modulation) so that it can be used as alternative energy, and help reduce the consumption of electricity from PLN. The battery used 12V 80Ah and a solar panel module 50W for energy storage and system resources. The research results show that systems can automatically charge energy using sunlight and turn the lights to 7W. Using the charging system automatically uses PWM to reduce the risk of damage to the battery because, in the charging process, battery conditions will be monitored. The maximum power generated from solar panel modules used is 35.57 W.
如果不开发替代能源,印尼将在未来 11 到 12 年内耗尽石油和天然气储备,成为一个净进口国。因此,有必要利用不依赖石油或天然气的替代能源。太阳能就是一种替代能源。本研究设计了一种装置,可将太阳光能转化为电能,并通过 PWM(脉宽调制)将电能自动存储在电池中,从而用作替代能源,帮助减少公共电力公司的电力消耗。蓄电池使用 12V 80Ah 和一个 50W 的太阳能电池板模块,用于储存能量和系统资源。研究结果表明,系统可以利用太阳光自动充电,并将灯的功率调至 7W。利用充电系统自动使用 PWM,可降低损坏蓄电池的风险,因为在充电过程中,蓄电池的状况将受到监控。使用的太阳能电池板模块产生的最大功率为 35.57 瓦。
{"title":"Solar Panel Power Generator with Automatic Charging using PWM System based on Microcontroller","authors":"Sulistyo Widodo, Erfiana Wahyuningsih, Y. G. Adhiyoga","doi":"10.20895/infotel.v16i1.1075","DOIUrl":"https://doi.org/10.20895/infotel.v16i1.1075","url":null,"abstract":"Indonesia will become a net importer if it runs out of oil and gas reserves within the next 11 to 12 years if no alternative energy sources are developed. Therefore, there is a need to utilize alternative energy that is not dependent on oil or gas. One alternative energy is using solar light energy. This research designed a device that can convert the energy of sunlight into electrical energy and automatically store electrical energy in a battery with PWM (Pulse Width Modulation) so that it can be used as alternative energy, and help reduce the consumption of electricity from PLN. The battery used 12V 80Ah and a solar panel module 50W for energy storage and system resources. The research results show that systems can automatically charge energy using sunlight and turn the lights to 7W. Using the charging system automatically uses PWM to reduce the risk of damage to the battery because, in the charging process, battery conditions will be monitored. The maximum power generated from solar panel modules used is 35.57 W.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"37 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140444389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geo-Navigation in Museums: Augmented Reality Application in the Geological Museum Indonesia 博物馆中的地理导航:印度尼西亚地质博物馆的增强现实应用
Pub Date : 2024-02-21 DOI: 10.20895/infotel.v16i1.1103
A. A. Gozali, Fat’hah Noor Prawita, Ihshan Gumilar, Haidar Rashid Ramdana Putra, Muhammad Arief Fauzan
Navigational challenges in large buildings with multiple rooms, such as museums, often result in inefficient visitor experiences. Traditional signage and direction plans, while common, do not always effectively convey the necessary information. This paper introduces an innovative solution leveraging Augmented Reality (AR) technology to enhance navigation in such complex environments. We developed a mobile application utilizing the Immersal Software Development Kit (SDK) to facilitate interaction with the surroundings in the Bandung Geological Museum. The application serves as a digital guide, providing clear directions and route information to various rooms within the museum. Our study's findings reveal that the application not only facilitated easier navigation through its accurate room identification and route suggestions but also enhanced the overall visitor experience by making it more interactive and immersive. Furthermore, the user engagement and experience survey, encompassing a broad demographic range, highlighted a significant increase in visitor satisfaction and interaction. The application's intuitive and user-friendly interface played a key role in this enhanced engagement. The survey results reflect the application's success in meeting its main objectives, demonstrating usability, and offering an effective user interface.
在博物馆等拥有多个房间的大型建筑中,导航难题往往会导致游客体验效率低下。传统的指示牌和方向图虽然常见,但并不总能有效传达必要的信息。本文介绍了一种利用增强现实(AR)技术的创新解决方案,以增强在此类复杂环境中的导航功能。我们利用 Immersal 软件开发工具包(SDK)开发了一款移动应用程序,以促进与万隆地质博物馆周围环境的互动。该应用程序可作为数字导游,提供通往博物馆内各个房间的明确方向和路线信息。我们的研究结果表明,该应用程序不仅通过准确的房间识别和路线建议方便了导航,还通过增强互动性和沉浸感提升了游客的整体体验。此外,涵盖广泛人群的用户参与和体验调查显示,参观者的满意度和互动性显著提高。该应用程序直观、友好的用户界面在提高参与度方面发挥了关键作用。调查结果反映出,该应用程序在实现其主要目标、展示可用性和提供有效的用户界面方面取得了成功。
{"title":"Geo-Navigation in Museums: Augmented Reality Application in the Geological Museum Indonesia","authors":"A. A. Gozali, Fat’hah Noor Prawita, Ihshan Gumilar, Haidar Rashid Ramdana Putra, Muhammad Arief Fauzan","doi":"10.20895/infotel.v16i1.1103","DOIUrl":"https://doi.org/10.20895/infotel.v16i1.1103","url":null,"abstract":"Navigational challenges in large buildings with multiple rooms, such as museums, often result in inefficient visitor experiences. Traditional signage and direction plans, while common, do not always effectively convey the necessary information. This paper introduces an innovative solution leveraging Augmented Reality (AR) technology to enhance navigation in such complex environments. We developed a mobile application utilizing the Immersal Software Development Kit (SDK) to facilitate interaction with the surroundings in the Bandung Geological Museum. The application serves as a digital guide, providing clear directions and route information to various rooms within the museum. Our study's findings reveal that the application not only facilitated easier navigation through its accurate room identification and route suggestions but also enhanced the overall visitor experience by making it more interactive and immersive. Furthermore, the user engagement and experience survey, encompassing a broad demographic range, highlighted a significant increase in visitor satisfaction and interaction. The application's intuitive and user-friendly interface played a key role in this enhanced engagement. The survey results reflect the application's success in meeting its main objectives, demonstrating usability, and offering an effective user interface.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"14 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140441906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted Voting Ensemble Learning of CNN Architectures for Diabetic Retinopathy Classification 用于糖尿病视网膜病变分类的 CNN 架构的加权投票集合学习
Pub Date : 2024-02-19 DOI: 10.20895/infotel.v16i1.999
Anita Desiani, Rifkie Primartha, Herlina Hanum, Siti Rusdiana Puspa Dewi, Muhammad Gibran Al-Filambany, Muhammad Suedarmin, B. Suprihatin
Diabetic Retinopathy (DR) is a diabetes disease that attacks the retina of the eye and can be recognized through retinal images. The process of assisting retinal images can be done by applying deep learning-based methods, one of which is the Convolutional Neural Network (CNN). CNN has many architectures that can perform image classification processes, namely ResNet-50, MobileNet, and EfficientNet. Weaknesses of each architecture can be overcome through ensemble learning methods that can add up the performance results of each classification method. The study applies the ensemble learning method to improve the performance of the ResNet-50, MobileNet, and EfficientNet architectures in paying for DR disease on the retina by weighted voting. The data used are the APTOS and EyePACS datasets. The method in this research is data collection, training, testing, and evaluation of each architecture and ensemble learning. The results of the superior ensemble learning performance in the value of accuracy, F1-Score, and Cohens Kappa were obtained respectively 93.3%, 93.42%, and 0.866. The best specificity value was obtained by Resnet-50 at 99.78% and the highest sensitivity value was obtained by EfficientNet at 96.2%. Based on the classification results of each architectural and ensemble learning, it can be interpreted that the proposed ensemble learning method is excellent to perform image classification for Diabetic Retinopathy.
糖尿病视网膜病变(DR)是一种侵害眼睛视网膜的糖尿病,可通过视网膜图像进行识别。辅助视网膜图像的过程可以通过应用基于深度学习的方法来完成,卷积神经网络(CNN)就是其中之一。卷积神经网络有许多可以执行图像分类过程的架构,即 ResNet-50、MobileNet 和 EfficientNet。每种架构的弱点都可以通过集合学习方法加以克服,集合学习方法可以将每种分类方法的性能结果相加。本研究应用了集合学习方法,通过加权投票来提高 ResNet-50、MobileNet 和 EfficientNet 架构在支付视网膜 DR 疾病费用方面的性能。使用的数据是 APTOS 和 EyePACS 数据集。本研究的方法是对每个架构和集合学习进行数据收集、训练、测试和评估。结果表明,在准确率、F1-Score 和 Cohens Kappa 值上,集合学习性能优越,分别为 93.3%、93.42% 和 0.866;Resnet-50 的特异性值最好,为 99.78%;EfficientNet 的灵敏度值最高,为 96.2%。根据各架构和集合学习的分类结果,可以认为所提出的集合学习方法在进行糖尿病视网膜病变的图像分类方面表现出色。
{"title":"Weighted Voting Ensemble Learning of CNN Architectures for Diabetic Retinopathy Classification","authors":"Anita Desiani, Rifkie Primartha, Herlina Hanum, Siti Rusdiana Puspa Dewi, Muhammad Gibran Al-Filambany, Muhammad Suedarmin, B. Suprihatin","doi":"10.20895/infotel.v16i1.999","DOIUrl":"https://doi.org/10.20895/infotel.v16i1.999","url":null,"abstract":"Diabetic Retinopathy (DR) is a diabetes disease that attacks the retina of the eye and can be recognized through retinal images. The process of assisting retinal images can be done by applying deep learning-based methods, one of which is the Convolutional Neural Network (CNN). CNN has many architectures that can perform image classification processes, namely ResNet-50, MobileNet, and EfficientNet. Weaknesses of each architecture can be overcome through ensemble learning methods that can add up the performance results of each classification method. The study applies the ensemble learning method to improve the performance of the ResNet-50, MobileNet, and EfficientNet architectures in paying for DR disease on the retina by weighted voting. The data used are the APTOS and EyePACS datasets. The method in this research is data collection, training, testing, and evaluation of each architecture and ensemble learning. The results of the superior ensemble learning performance in the value of accuracy, F1-Score, and Cohens Kappa were obtained respectively 93.3%, 93.42%, and 0.866. The best specificity value was obtained by Resnet-50 at 99.78% and the highest sensitivity value was obtained by EfficientNet at 96.2%. Based on the classification results of each architectural and ensemble learning, it can be interpreted that the proposed ensemble learning method is excellent to perform image classification for Diabetic Retinopathy.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140450943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Evaluation of Wireless Network Security with Penetration Testing Method at PT PLN UP2D S2JB 在 PT PLN UP2D S2JB 使用渗透测试法评估无线网络安全
Pub Date : 2024-02-16 DOI: 10.20895/infotel.v16i1.1057
Tamsir Ariyadi, I. Irham, Eko Fajar Cahyadi
Advances in information and communication technology continue to grow over time. This causes significant changes in social, economic, and political conditions. One company that requires strong network security is PT PLN (Perusahaan Listrik Negara) Persero, which is a leading energy company in Indonesia. In this case, the need to evaluate network security at PT PLN is very important. This evaluation will help identify vulnerabilities and security gaps that exist in PT PLN's network infrastructure. This network security evaluation using the Penetration Testing Execution Standards (PTES) method can provide an overview of the vulnerabilities or weaknesses of the network system at PT PLN UP2D S2JB which has quite a lot of gaps to exploit. This is evidenced by the results of fifteen tests conducted, only two of which failed, namely in the type of attack The Rogue Access Point. The results of Penetration Testing are very necessary and important as feedback for system managers in fixing existing vulnerability gaps.
随着时间的推移,信息和通信技术不断进步。这导致社会、经济和政治条件发生重大变化。PT PLN (Perusahaan Listrik Negara) Persero 是一家需要强大网络安全的公司,它是印度尼西亚的一家领先能源公司。在这种情况下,评估 PT PLN 的网络安全非常重要。该评估将有助于确定 PT PLN 网络基础设施中存在的漏洞和安全缺口。使用渗透测试执行标准(PTES)方法进行的网络安全评估可以概述 PT PLN UP2D S2JB 网络系统的漏洞或薄弱环节,该系统有很多漏洞可以利用。15 项测试结果证明了这一点,其中只有两项测试失败,即 "流氓接入点 "攻击类型。渗透测试的结果是非常必要和重要的,可作为系统管理员修复现有漏洞缺口的反馈。
{"title":"An Evaluation of Wireless Network Security with Penetration Testing Method at PT PLN UP2D S2JB","authors":"Tamsir Ariyadi, I. Irham, Eko Fajar Cahyadi","doi":"10.20895/infotel.v16i1.1057","DOIUrl":"https://doi.org/10.20895/infotel.v16i1.1057","url":null,"abstract":"Advances in information and communication technology continue to grow over time. This causes significant changes in social, economic, and political conditions. One company that requires strong network security is PT PLN (Perusahaan Listrik Negara) Persero, which is a leading energy company in Indonesia. In this case, the need to evaluate network security at PT PLN is very important. This evaluation will help identify vulnerabilities and security gaps that exist in PT PLN's network infrastructure. This network security evaluation using the Penetration Testing Execution Standards (PTES) method can provide an overview of the vulnerabilities or weaknesses of the network system at PT PLN UP2D S2JB which has quite a lot of gaps to exploit. This is evidenced by the results of fifteen tests conducted, only two of which failed, namely in the type of attack The Rogue Access Point. The results of Penetration Testing are very necessary and important as feedback for system managers in fixing existing vulnerability gaps.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"197 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140454547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal Sequential-Artificial Neural Network Enhancements for Improved Smart Lighting Control 用于改进智能照明控制的时序人工神经网络增强功能
Pub Date : 2024-02-13 DOI: 10.20895/infotel.v16i1.1025
Aji Gautama Putrada, M. Abdurohman, Doan Perdana, Hilal Hudan Nuha
Several previous studies have proposed a temporal sequential-artificial neural network (TS-ANN) to convert PIR Sensor movement data into presence data and improve the performance of smart lighting control. However, such a temporal-sequential forecasting concept has a curse of dimensionality problem. This study aims to proposes the application of principal component analysis with TS-ANN (PCA-TS-ANN) as an intelligent method for controlling smart lighting with low dimensions. We have primary data directly from a smart lighting implementation that utilizes PIR sensors. We apply cross-correlation to the original dataset to find the optimum time step. Then we discover the optimum TS-ANN based on selected tuning parameter values through PCC. We then design and compare scenarios involving the combination of TS-ANN and PCA. Finally, we evaluate these scenarios using the metrics Accuracy, Precision, Recall, F1− Score, and Delay. The results of this study are the PCA-TS-ANN model with Accuracy, Precision, Recall, and F1−Score value of 0.9993, 0.9997, 0.9994, and 0.9996 respectively. The PCA method reduces the TS-ANN features from 1200 features to 36 features. The model size has also decreased from 3534kB to 807kB. Our model has a simpler complexity with TS-ANN that the µ ± σ Delay is 0.27±0.06 ms versus 0.34±0.11 ms.
之前的一些研究提出了一种时序人工神经网络(TS-ANN),用于将 PIR 传感器的移动数据转换为存在数据,从而提高智能照明控制的性能。然而,这种时序预测概念存在维度诅咒问题。本研究旨在提出一种应用主成分分析与 TS-ANN (PCA-TS-ANN)的智能方法,用于低维度的智能照明控制。我们从利用 PIR 传感器的智能照明实施中直接获得了原始数据。我们对原始数据集进行交叉相关处理,以找到最佳时间步长。然后,我们根据所选的调整参数值,通过 PCC 发现最佳 TS-ANN 。然后,我们设计并比较涉及 TS-ANN 和 PCA 组合的方案。最后,我们使用准确度、精确度、召回率、F1-得分和延迟等指标对这些方案进行评估。研究结果表明,PCA-TS-ANN 模型的准确度、精确度、召回率和 F1 分数分别为 0.9993、0.9997、0.9994 和 0.9996。PCA 方法将 TS-ANN 特征从 1200 个特征减少到 36 个。模型大小也从 3534kB 减小到 807kB。与 TS-ANN 相比,我们的模型具有更简单的复杂性,µ ± σ 延迟为 0.27±0.06 ms,而 TS-ANN 为 0.34±0.11 ms。
{"title":"Temporal Sequential-Artificial Neural Network Enhancements for Improved Smart Lighting Control","authors":"Aji Gautama Putrada, M. Abdurohman, Doan Perdana, Hilal Hudan Nuha","doi":"10.20895/infotel.v16i1.1025","DOIUrl":"https://doi.org/10.20895/infotel.v16i1.1025","url":null,"abstract":"Several previous studies have proposed a temporal sequential-artificial neural network (TS-ANN) to convert PIR Sensor movement data into presence data and improve the performance of smart lighting control. However, such a temporal-sequential forecasting concept has a curse of dimensionality problem. This study aims to proposes the application of principal component analysis with TS-ANN (PCA-TS-ANN) as an intelligent method for controlling smart lighting with low dimensions. We have primary data directly from a smart lighting implementation that utilizes PIR sensors. We apply cross-correlation to the original dataset to find the optimum time step. Then we discover the optimum TS-ANN based on selected tuning parameter values through PCC. We then design and compare scenarios involving the combination of TS-ANN and PCA. Finally, we evaluate these scenarios using the metrics Accuracy, Precision, Recall, F1− Score, and Delay. The results of this study are the PCA-TS-ANN model with Accuracy, Precision, Recall, and F1−Score value of 0.9993, 0.9997, 0.9994, and 0.9996 respectively. The PCA method reduces the TS-ANN features from 1200 features to 36 features. The model size has also decreased from 3534kB to 807kB. Our model has a simpler complexity with TS-ANN that the µ ± σ Delay is 0.27±0.06 ms versus 0.34±0.11 ms.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"24 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139964273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of Binary Particle Swarm Optimization (BPSO) and Multilayer Perceptron (MLP) for Survival Prediction of Heart Failure Patients 二元粒子群优化(BPSO)与多层感知器(MLP)相结合预测心力衰竭患者的存活率
Pub Date : 2024-02-05 DOI: 10.20895/infotel.v16i1.974
S. Sutikno
Heart failure is a dangerous condition in which the heart cannot pump blood effectively and can lead to death. To improve this treatment, it needs methods to predict patient survival. This paper proposed combining wrapping features, namely Binary particle swarm optimization (BPSO) and a multilayer perceptron (MLP) classifier called BPSO-MLP. BPSO is used to determine the most relevant feature subset, and MLP is used to calculate its fitness. The experiment used a public dataset containing the medical records of 299 heart failure patients. This dataset comprises 13 features: age, anemia, high blood pressure, creatinine phosphokinase (CPK), diabetes, ejection fraction, platelets, gender, serum creatinine, serum sodium, smoking, time, and death events. The experiment results showed that the proposed method could produce an accuracy of up to 91.11%. The proposed method can increase accuracy by 8.89% compared to MLP (without BPSO). The addition of this wrapping feature has a significant influence on the accuracy results.
心力衰竭是心脏无法有效泵血的一种危险情况,可导致死亡。为了改善这种治疗方法,需要有预测患者存活率的方法。本文建议将二元粒子群优化(BPSO)和多层感知器(MLP)分类器(BPSO-MLP)结合起来。BPSO 用于确定最相关的特征子集,MLP 用于计算其适应度。实验使用了一个公共数据集,其中包含 299 名心衰患者的医疗记录。该数据集包含 13 个特征:年龄、贫血、高血压、肌酐磷酸激酶(CPK)、糖尿病、射血分数、血小板、性别、血清肌酐、血清钠、吸烟、时间和死亡事件。实验结果表明,拟议方法的准确率高达 91.11%。与 MLP(不含 BPSO)相比,所提出的方法可将准确率提高 8.89%。该包装特征的添加对准确率结果有显著影响。
{"title":"Combination of Binary Particle Swarm Optimization (BPSO) and Multilayer Perceptron (MLP) for Survival Prediction of Heart Failure Patients","authors":"S. Sutikno","doi":"10.20895/infotel.v16i1.974","DOIUrl":"https://doi.org/10.20895/infotel.v16i1.974","url":null,"abstract":"Heart failure is a dangerous condition in which the heart cannot pump blood effectively and can lead to death. To improve this treatment, it needs methods to predict patient survival. This paper proposed combining wrapping features, namely Binary particle swarm optimization (BPSO) and a multilayer perceptron (MLP) classifier called BPSO-MLP. BPSO is used to determine the most relevant feature subset, and MLP is used to calculate its fitness. The experiment used a public dataset containing the medical records of 299 heart failure patients. This dataset comprises 13 features: age, anemia, high blood pressure, creatinine phosphokinase (CPK), diabetes, ejection fraction, platelets, gender, serum creatinine, serum sodium, smoking, time, and death events. The experiment results showed that the proposed method could produce an accuracy of up to 91.11%. The proposed method can increase accuracy by 8.89% compared to MLP (without BPSO). The addition of this wrapping feature has a significant influence on the accuracy results.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"56 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139965403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water Meter Reading Application System Development using Image Processing A Case Study from Sindangsari Village Water Services 利用图像处理技术开发水表读取应用系统 辛当沙里村供水服务案例研究
Pub Date : 2024-02-04 DOI: 10.20895/infotel.v16i1.1074
Umar Ali Ahmad, Ikbal Ramdani, Fath Muhammad Isham, R. R. Dwiputra S, Yusup Diva Pratama, Rifdo Shah Alam, Fauzi Sofyan, Reza Rendian Septiawan, Ratna Astuti Nugraheni, A. Rusdinar, Ashri Dinimaharawati, M. A. Abdurahman
PAMDES is a drinking water company managed by local villagers. The water meter data are read and recorded manually without any technology, which is ineffective and inefficient. Digital image processing can be implemented to read and record the water meter data automatically. When implemented in the water meter, it can help PAMDES officers to read the data without the internet, without changing the conventional water meter device, and the water meter data can be read and recorded effectively and efficiently. This research used the agile method, one of the methods used in the Software Development Life Cycle (SDLC). The method is done repetitively within a short period of time. The output of this research is an application with a digital image processing model that can read water meter data up to 82% in normal conditions and still can be improved. This research aims to make the water meter data reading and recording more effective and efficient and to contribute to the transformation of Sindangsari village into a digitalized village.
PAMDES 是一家由当地村民管理的饮用水公司。水表数据由人工读取和记录,没有任何技术含量,效率低下。数字图像处理可以自动读取和记录水表数据。在水表中实施后,它可以帮助 PAMDES 官员在不使用互联网、不改变传统水表设备的情况下读取数据,并有效和高效地读取和记录水表数据。本研究采用了敏捷方法,这是软件开发生命周期(SDLC)中使用的方法之一。该方法在短时间内重复完成。本研究的成果是一个具有数字图像处理模型的应用程序,它在正常情况下读取水表数据的效率可达 82%,而且仍可改进。这项研究旨在使水表数据的读取和记录更加有效和高效,并为 Sindangsari 村向数字化村庄的转变做出贡献。
{"title":"Water Meter Reading Application System Development using Image Processing A Case Study from Sindangsari Village Water Services","authors":"Umar Ali Ahmad, Ikbal Ramdani, Fath Muhammad Isham, R. R. Dwiputra S, Yusup Diva Pratama, Rifdo Shah Alam, Fauzi Sofyan, Reza Rendian Septiawan, Ratna Astuti Nugraheni, A. Rusdinar, Ashri Dinimaharawati, M. A. Abdurahman","doi":"10.20895/infotel.v16i1.1074","DOIUrl":"https://doi.org/10.20895/infotel.v16i1.1074","url":null,"abstract":"PAMDES is a drinking water company managed by local villagers. The water meter data are read and recorded manually without any technology, which is ineffective and inefficient. Digital image processing can be implemented to read and record the water meter data automatically. When implemented in the water meter, it can help PAMDES officers to read the data without the internet, without changing the conventional water meter device, and the water meter data can be read and recorded effectively and efficiently. This research used the agile method, one of the methods used in the Software Development Life Cycle (SDLC). The method is done repetitively within a short period of time. The output of this research is an application with a digital image processing model that can read water meter data up to 82% in normal conditions and still can be improved. This research aims to make the water meter data reading and recording more effective and efficient and to contribute to the transformation of Sindangsari village into a digitalized village.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"17 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140461744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Butterfly Image Classification using Convolution Neural Network with AlexNet Architecture 使用带有 AlexNet 架构的卷积神经网络进行蝴蝶图像分类
Pub Date : 2024-02-04 DOI: 10.20895/infotel.v16i1.1004
Ainin Maftukhah, Abdul Fadlil, Sunardi Sunardi
Kurangnya pengetahuan tentang kupu-kupu dapat menimbulkan masalah karena kupu-kupu berperan penting dalam ekosistem. Urgensi dalam penelitian ini terkait dengan bidang biologi yaitu klasifikasi citra kupu-kupu dapat membantu dalam memahami pola migrasi, pola kawin, dan pola perilaku kupu-kupu dalam interaksinya dengan lingkungan sekitarnya. Tujuan dari penelitian ini adalah untuk mengklasifikasikan spesies kupu-kupu. Dataset yang digunakan adalah dataset citra kupu-kupu sebanyak 5.499 dengan total 50 spesies. Metode yang diterapkan adalah convolution neural network (CNN) dengan arsitektur AlexNet. Proses pelatihan menggunakan arsitektur AlexNet diawali dengan input dataset citra, dataset akan diproses terlebih dahulu seperti resizing dan RGB to grayscale.Kemudian lakukan filter atau kernel. Output dari kernel digunakan untuk melakukan pooled convolution. Konvolusi dan pooling dilakukan sebanyak lima kali. Setiap hasil max pooling terakhir diratakan tiga kali untuk mengubah gambar berbentuk matriks menjadi tiga dimensi. Setelah itu, terhubung sepenuhnya. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Setiap hasil max pooling terakhir diratakan tiga kali untuk mengubah gambar berbentuk matriks menjadi tiga dimensi. Setelah itu, terhubung sepenuhnya. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Setiap hasil max pooling terakhir diratakan tiga kali untuk mengubah gambar berbentuk matriks menjadi tiga dimensi. Setelah itu, terhubung sepenuhnya. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan pre
由于蝴蝶在生态系统中扮演着重要角色,缺乏对蝴蝶的了解可能会带来问题。这项研究的紧迫性与生物学领域有关,即蝴蝶图像的分类有助于了解蝴蝶的迁徙模式、交配模式以及与周围环境互动的行为模式。本研究的目的是对蝴蝶物种进行分类。使用的数据集包含 5,499 张蝴蝶图像,共 50 个物种。应用的方法是采用 AlexNet 架构的卷积神经网络(CNN)。使用 AlexNet 架构的训练过程从输入图像数据集开始,首先对数据集进行处理,如调整大小和将 RGB 转换为灰度,然后进行过滤或内核处理。核的输出用于执行池化卷积。卷积和池化共进行五次。最后的每个最大池化结果都会被扁平化三次,从而将矩阵形状的图像变成三维图像。之后,将其完全连接起来。最后一个阶段是对图像进行分类。使用 AlexNet 架构的测试过程从输入图像数据集开始,对数据集进行预处理,如调整大小和将 RGB 转换为灰度。然后使用 AlexNet CNN 架构对数据集进行分类。分类结果显示,调整大小为 100x100 时,准确率为 80%;调整大小为 150x150 时,准确率为 82%;调整大小为 200x200 时,准确率为 82%。每个最后的最大池化结果都会被扁平化三次,从而将矩阵形图像转化为三维图像。然后,将其完全连接起来。最后一个阶段是对图像进行分类。使用 AlexNet 架构的测试过程从输入图像数据集开始,对数据集进行预处理,如调整大小和将 RGB 转换为灰度。然后使用 AlexNet CNN 架构对数据集进行分类。分类结果显示,调整大小为 100x100 时,准确率为 80%;调整大小为 150x150 时,准确率为 82%;调整大小为 200x200 时,准确率为 82%。每个最后的最大池化结果都会被扁平化三次,从而将矩阵形图像转化为三维图像。然后,将其完全连接起来。最后一个阶段是对图像进行分类。使用 AlexNet 架构的测试过程从输入图像数据集开始,对数据集进行预处理,如调整大小和将 RGB 转换为灰度。然后使用 AlexNet CNN 架构对数据集进行分类。在调整大小为 100x100 时,分类结果的准确率为 80%;在调整大小为 150x150 时,准确率为 82%;在调整大小为 200x200 时,准确率为 82%。最后一个阶段是对图像进行分类。使用 AlexNet 架构的测试过程从输入图像数据集开始,对数据集进行预处理,如调整大小和将 RGB 转换为灰度。然后使用 AlexNet CNN 架构对数据集进行分类。然后进行模型评估,最后得出蝴蝶图像的分类结果。分类结果显示,调整大小为 100x100 的准确率为 80%,调整大小为 150x150 的准确率为 82%,调整大小为 200x200 的准确率为 82%。使用 AlexNet 架构的测试过程从输入图像数据集开始,对数据集进行预处理,如调整大小和将 RGB 转换为灰度。然后使用 AlexNet CNN 架构对数据集进行分类。然后进行模型评估,最后得出蝴蝶图像的分类结果。调整大小为 100x100 的分类结果准确率为 80%,调整大小为 150x150 的分类结果准确率为 82%,调整大小为 200x200 的分类结果准确率为 82%。调整大小为 100x100 的蝴蝶图像分类准确率为 80%,调整大小为 150x150 的蝴蝶图像分类准确率为 82%,调整大小为 200x200 的蝴蝶图像分类准确率为 82%。
{"title":"Butterfly Image Classification using Convolution Neural Network with AlexNet Architecture","authors":"Ainin Maftukhah, Abdul Fadlil, Sunardi Sunardi","doi":"10.20895/infotel.v16i1.1004","DOIUrl":"https://doi.org/10.20895/infotel.v16i1.1004","url":null,"abstract":"Kurangnya pengetahuan tentang kupu-kupu dapat menimbulkan masalah karena kupu-kupu berperan penting dalam ekosistem. Urgensi dalam penelitian ini terkait dengan bidang biologi yaitu klasifikasi citra kupu-kupu dapat membantu dalam memahami pola migrasi, pola kawin, dan pola perilaku kupu-kupu dalam interaksinya dengan lingkungan sekitarnya. Tujuan dari penelitian ini adalah untuk mengklasifikasikan spesies kupu-kupu. Dataset yang digunakan adalah dataset citra kupu-kupu sebanyak 5.499 dengan total 50 spesies. Metode yang diterapkan adalah convolution neural network (CNN) dengan arsitektur AlexNet. Proses pelatihan menggunakan arsitektur AlexNet diawali dengan input dataset citra, dataset akan diproses terlebih dahulu seperti resizing dan RGB to grayscale.Kemudian lakukan filter atau kernel. Output dari kernel digunakan untuk melakukan pooled convolution. Konvolusi dan pooling dilakukan sebanyak lima kali. Setiap hasil max pooling terakhir diratakan tiga kali untuk mengubah gambar berbentuk matriks menjadi tiga dimensi. Setelah itu, terhubung sepenuhnya. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Setiap hasil max pooling terakhir diratakan tiga kali untuk mengubah gambar berbentuk matriks menjadi tiga dimensi. Setelah itu, terhubung sepenuhnya. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Setiap hasil max pooling terakhir diratakan tiga kali untuk mengubah gambar berbentuk matriks menjadi tiga dimensi. Setelah itu, terhubung sepenuhnya. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan pre","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"17 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140462054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imbalance Dataset in Aspect-Based Sentiment Analysis on Game Genshin Impact Review 基于方面的情感分析中的不平衡数据集对游戏《源氏物语》影响的评论
Pub Date : 2024-02-04 DOI: 10.20895/infotel.v16i1.984
Prabowo Adi Perwira, Nelly Indriani Widiastuti
Sentiment analysis was commonly used to determine the polarity of the review text. However, there is a problem if some reviews have more than one aspect with different polarities, so the reviews have more than one polarity. That has happened in some reviews on the game Genshin Impact. Not merely that, the number of sentiments contained in a review is not always the same as other reviews will cause imbalanced data. So, this study will handle imbalance data with Random Under-Sampling and Random Over-Sampling on aspect-based-sentiment-analysis of Genshin Impact Review with Multinomial Naïve-Bayes, so that the classification prediction does not ignore the minority class due to the dominance of the majority class. The classification process used K-Fold Cross Validation (k=10) validation method and the Laplace smoothing technique on Multinomial Naïve Bayes. As a result, the conclusion is that Random Oversampling had better accuracy than Random Undersampling in handling imbalanced data on aspect-based sentiment analysis of Genshin Impact game Review in Indonesian with Naïve Bayes Multinomial, with the highest accuracy of 85.55%.
情感分析通常用于确定评论文本的极性。但是,如果某些评论有多个不同极性的方面,那么评论就会有多个极性,这样就会出现问题。游戏《源氏冲击》的一些评论就出现了这种情况。不仅如此,评论中包含的情感数量不一定与其他评论相同,也会造成数据不平衡。因此,本研究将使用随机欠采样和随机过采样来处理不平衡数据,并使用多项式 Naïve-Bayes 对《源氏物语》评论进行基于方面的情感分析,从而使分类预测不会因多数类占优势而忽略少数类。分类过程使用了 K-Fold Cross Validation(k=10)验证方法和多项式奈维贝叶斯的拉普拉斯平滑技术。结果表明,在使用奈伊夫贝叶斯多项式对印尼语《元气冲击》游戏评论进行基于方面的情感分析时,随机过度采样比随机不足采样在处理不平衡数据方面具有更好的准确性,准确率最高,达到 85.55%。
{"title":"Imbalance Dataset in Aspect-Based Sentiment Analysis on Game Genshin Impact Review","authors":"Prabowo Adi Perwira, Nelly Indriani Widiastuti","doi":"10.20895/infotel.v16i1.984","DOIUrl":"https://doi.org/10.20895/infotel.v16i1.984","url":null,"abstract":"Sentiment analysis was commonly used to determine the polarity of the review text. However, there is a problem if some reviews have more than one aspect with different polarities, so the reviews have more than one polarity. That has happened in some reviews on the game Genshin Impact. Not merely that, the number of sentiments contained in a review is not always the same as other reviews will cause imbalanced data. So, this study will handle imbalance data with Random Under-Sampling and Random Over-Sampling on aspect-based-sentiment-analysis of Genshin Impact Review with Multinomial Naïve-Bayes, so that the classification prediction does not ignore the minority class due to the dominance of the majority class. The classification process used K-Fold Cross Validation (k=10) validation method and the Laplace smoothing technique on Multinomial Naïve Bayes. As a result, the conclusion is that Random Oversampling had better accuracy than Random Undersampling in handling imbalanced data on aspect-based sentiment analysis of Genshin Impact game Review in Indonesian with Naïve Bayes Multinomial, with the highest accuracy of 85.55%.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"24 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140461924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Jurnal Infotel
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1