{"title":"Animal bioenergetics: Thermodynamic and kinetic analysis of growth and metabolism of Anguilla anguilla","authors":"Marko E. Popović","doi":"10.1016/j.zool.2024.126158","DOIUrl":null,"url":null,"abstract":"<div><p>Bioenergetics and biothermodynamics are valuable tools in research on growth and metabolic processes of a wide range of organisms, including viruses, bacteria, fungi, algae and plants, as is shown by the many publications on this topic in the literature. These studies provide insight into growth and metabolism of individual species, as well as interactions between species, like the virus-host interaction (infection) and virus-virus interaction (competition). However, this approach has not yet been applied to animal species. The universality of biothermodynamics and bioenergetics provides a good motive to apply them in analysis of animals. In this research, we made a bioenergetic, biothermodynamic and kinetic characterization for the first time for an animal species – <em>Anguilla anguilla L.</em> (European eel). We made a comparative analysis on yellow (young adult) and silver (mature adult) phases. Metabolic processes were modeled as chemical reactions with characteristic thermodynamic properties: enthalpy, entropy and Gibbs energy. Moreover, Gibbs energy explained growth rates, through phenomenological equations. This analysis of animal metabolism and growth explained metabolic properties of yellow and silver <em>A. anguilla</em>, including the bioenergetic aspect of life history. Moreover, we compared thermodynamic properties of <em>A. anguilla</em> with those of its main macromolecular components and other organisms. The thermodynamic properties were explained by the structural properties of organisms. This research extends the bioenergetic and biothermodynamic approaches to zoology, which should allow analysis of the energetic aspect of animal metabolic processes, interactions with their environment and interactions with other organisms. Furthermore, it connects the macroscopic perspective of zoology with the microscopic perspectives of biochemistry, bioenergetics and biothermodynamics. This will provide a basis for development of mechanistic models of animal growth and metabolism.</p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944200624000175","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioenergetics and biothermodynamics are valuable tools in research on growth and metabolic processes of a wide range of organisms, including viruses, bacteria, fungi, algae and plants, as is shown by the many publications on this topic in the literature. These studies provide insight into growth and metabolism of individual species, as well as interactions between species, like the virus-host interaction (infection) and virus-virus interaction (competition). However, this approach has not yet been applied to animal species. The universality of biothermodynamics and bioenergetics provides a good motive to apply them in analysis of animals. In this research, we made a bioenergetic, biothermodynamic and kinetic characterization for the first time for an animal species – Anguilla anguilla L. (European eel). We made a comparative analysis on yellow (young adult) and silver (mature adult) phases. Metabolic processes were modeled as chemical reactions with characteristic thermodynamic properties: enthalpy, entropy and Gibbs energy. Moreover, Gibbs energy explained growth rates, through phenomenological equations. This analysis of animal metabolism and growth explained metabolic properties of yellow and silver A. anguilla, including the bioenergetic aspect of life history. Moreover, we compared thermodynamic properties of A. anguilla with those of its main macromolecular components and other organisms. The thermodynamic properties were explained by the structural properties of organisms. This research extends the bioenergetic and biothermodynamic approaches to zoology, which should allow analysis of the energetic aspect of animal metabolic processes, interactions with their environment and interactions with other organisms. Furthermore, it connects the macroscopic perspective of zoology with the microscopic perspectives of biochemistry, bioenergetics and biothermodynamics. This will provide a basis for development of mechanistic models of animal growth and metabolism.
期刊介绍:
Zoology is a journal devoted to experimental and comparative animal science. It presents a common forum for all scientists who take an explicitly organism oriented and integrative approach to the study of animal form, function, development and evolution.
The journal invites papers that take a comparative or experimental approach to behavior and neurobiology, functional morphology, evolution and development, ecological physiology, and cell biology. Due to the increasing realization that animals exist only within a partnership with symbionts, Zoology encourages submissions of papers focused on the analysis of holobionts or metaorganisms as associations of the macroscopic host in synergistic interdependence with numerous microbial and eukaryotic species.
The editors and the editorial board are committed to presenting science at its best. The editorial team is regularly adjusting editorial practice to the ever changing field of animal biology.