Oxygen functionalized carbon obtained from pyrolysis of heterocyclic compounds with their decomposition mechanism

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2024-02-20 DOI:10.1016/j.cartre.2024.100333
Pitambar Poudel, Aaron T. Marshall
{"title":"Oxygen functionalized carbon obtained from pyrolysis of heterocyclic compounds with their decomposition mechanism","authors":"Pitambar Poudel,&nbsp;Aaron T. Marshall","doi":"10.1016/j.cartre.2024.100333","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, two heterocyclic compounds, 2,2-dimethyl-1,3-dioxane-4,6‑dione (DMDO) and 2,2,5-trimethyl-1,3-dioxane-4,6‑dione (5-DMDO), were thermally decomposed in an inert atmosphere of nitrogen to obtain oxygen functionalized carbon. The decomposition of these compounds was investigated by thermal gravimetric analysis (TGA) and gas chromatography-mass spectroscopy (GCMS) as well as hybrid-density functional theory (h-DFT). DMDO was found to have better thermal stability compared to 5-DMDO and thus gave a higher yield of carbon after decomposition at 1000 °C. This experimental observation was supported by the h-DFT analysis of the energy barriers of the two decomposition mechanisms proposed from the initial decomposition products detected above 100 °C with GCMS analysis and the thermodynamic spontaneity of the final product (solid carbon) at 800 to 1000 °C with TGA. X-ray photoelectron spectroscopy, scanning electron microscopy / energy dispersion spectroscopy and cyclic voltammetry were used to characterize the carbon and evidence was found to suggest that the electrochemical activity of the material towards the [Fe(CN)<sub>6</sub>]<sup>4−</sup>/[F<em>e</em>(CN)<sub>6</sub>]<sup>3-</sup> redox couple was dependent on the oxygen content of the carbon.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000142/pdfft?md5=ed12cfa9cc6c7c5f70a674995b0c60dc&pid=1-s2.0-S2667056924000142-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, two heterocyclic compounds, 2,2-dimethyl-1,3-dioxane-4,6‑dione (DMDO) and 2,2,5-trimethyl-1,3-dioxane-4,6‑dione (5-DMDO), were thermally decomposed in an inert atmosphere of nitrogen to obtain oxygen functionalized carbon. The decomposition of these compounds was investigated by thermal gravimetric analysis (TGA) and gas chromatography-mass spectroscopy (GCMS) as well as hybrid-density functional theory (h-DFT). DMDO was found to have better thermal stability compared to 5-DMDO and thus gave a higher yield of carbon after decomposition at 1000 °C. This experimental observation was supported by the h-DFT analysis of the energy barriers of the two decomposition mechanisms proposed from the initial decomposition products detected above 100 °C with GCMS analysis and the thermodynamic spontaneity of the final product (solid carbon) at 800 to 1000 °C with TGA. X-ray photoelectron spectroscopy, scanning electron microscopy / energy dispersion spectroscopy and cyclic voltammetry were used to characterize the carbon and evidence was found to suggest that the electrochemical activity of the material towards the [Fe(CN)6]4−/[Fe(CN)6]3- redox couple was dependent on the oxygen content of the carbon.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过热解杂环化合物获得的氧功能化碳及其分解机理
本研究在氮气惰性气氛中对两种杂环化合物--2,2-二甲基-1,3-二恶烷-4,6-二酮(DMDO)和 2,2,5-三甲基-1,3-二恶烷-4,6-二酮(5-DMDO)进行了热分解,以获得氧官能化碳。热重分析(TGA)、气相色谱-质谱(GCMS)和混合密度泛函理论(h-DFT)对这些化合物的分解进行了研究。研究发现,与 5-DMDO 相比,DMDO 具有更好的热稳定性,因此在 1000 °C 下分解后产生的碳更多。根据 GCMS 分析在 100 °C 以上检测到的初始分解产物以及 TGA 分析在 800 至 1000 °C 下最终产物(固态碳)的热力学自发性,对两种分解机制的能量势垒进行了 h-DFT 分析,从而支持了这一实验观察结果。利用 X 射线光电子能谱、扫描电子显微镜/能量色散光谱和循环伏安法对碳进行了表征,发现有证据表明该材料对[Fe(CN)6]4-/[Fe(CN)6]3-氧化还原对偶的电化学活性取决于碳中的氧含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Cornstarch as a green binder in supercapacitors: Understanding the effect of binder on the charge storage mechanism The effect of pyrolysis heating rate on the mesoporosity of Pluronic F-127 templated carbon xerogels Extraction, and characterization of CNC from waste sugarcane leaf sheath as a reinforcement of multifunctional bio-nanocomposite material: A waste to wealth approach Waste biomass-derived activated carbons for selective oxygen adsorption Carbonaceous matrixes-based free-standing electrode materials for energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1