Ultralow velocity zone and deep mantle flow beneath the Himalayas linked to subducted slab

IF 15.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Nature Geoscience Pub Date : 2024-02-26 DOI:10.1038/s41561-024-01386-5
Jonathan Wolf, Maureen D. Long, Daniel A. Frost
{"title":"Ultralow velocity zone and deep mantle flow beneath the Himalayas linked to subducted slab","authors":"Jonathan Wolf, Maureen D. Long, Daniel A. Frost","doi":"10.1038/s41561-024-01386-5","DOIUrl":null,"url":null,"abstract":"The origins of ultralow velocity zones, small-scale structures with extremely low seismic velocities found near the core–mantle boundary, remain poorly understood. One hypothesis is that they are mobile features that actively participate in mantle convection, but mantle flow adjacent to ultralow velocity zones is poorly understood and difficult to infer. Although deep mantle anisotropy observations can be used to infer mantle flow patterns, ultralow velocity zone structures are often not examined jointly with these observations. Here we present evidence from seismic waves that sample the lowermost mantle beneath the Himalayas for both an ultralow velocity zone and an adjacent region of seismic anisotropy associated with mantle flow. By modelling realistic mineral physics scenarios using global wavefield simulations, we show that the identified seismic anisotropy is consistent with horizontal shearing orientated northeast–southwest. Based on tomographic data of the surrounding mantle structure, we suggest that this southwestward flow is potentially linked to the remnants of the subducted slab impinging on the core–mantle boundary. The detected ultralow velocity zone is located at the southwestern edge of this anisotropic region, and therefore potentially affected by strong mantle deformation in the surrounding area. The presence of an ultralow velocity zone and seismic anisotropy in the lowermost mantle beneath the Himalayas is linked to subducted slab remnants and southwest mantle flow, according to analyses of seismic waves and mantle anisotropy measurements.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 4","pages":"302-308"},"PeriodicalIF":15.7000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-024-01386-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The origins of ultralow velocity zones, small-scale structures with extremely low seismic velocities found near the core–mantle boundary, remain poorly understood. One hypothesis is that they are mobile features that actively participate in mantle convection, but mantle flow adjacent to ultralow velocity zones is poorly understood and difficult to infer. Although deep mantle anisotropy observations can be used to infer mantle flow patterns, ultralow velocity zone structures are often not examined jointly with these observations. Here we present evidence from seismic waves that sample the lowermost mantle beneath the Himalayas for both an ultralow velocity zone and an adjacent region of seismic anisotropy associated with mantle flow. By modelling realistic mineral physics scenarios using global wavefield simulations, we show that the identified seismic anisotropy is consistent with horizontal shearing orientated northeast–southwest. Based on tomographic data of the surrounding mantle structure, we suggest that this southwestward flow is potentially linked to the remnants of the subducted slab impinging on the core–mantle boundary. The detected ultralow velocity zone is located at the southwestern edge of this anisotropic region, and therefore potentially affected by strong mantle deformation in the surrounding area. The presence of an ultralow velocity zone and seismic anisotropy in the lowermost mantle beneath the Himalayas is linked to subducted slab remnants and southwest mantle flow, according to analyses of seismic waves and mantle anisotropy measurements.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喜马拉雅山下与俯冲板块有关的超低速度带和深地幔流
超低速带是在地核-地幔边界附近发现的地震速度极低的小尺度结构,人们对其起源仍然知之甚少。一种假设认为它们是积极参与地幔对流的移动特征,但对邻近超低速带的地幔流动了解甚少,难以推断。虽然深部地幔各向异性观测可用于推断地幔流动模式,但超低速度带结构往往没有与这些观测联合起来进行研究。在此,我们通过对喜马拉雅山下最底层地幔的地震波取样,提出了超低速带和与地幔流动相关的邻近地震各向异性区域的证据。通过利用全球波场模拟现实的矿物物理情景,我们表明已确定的地震各向异性与东北-西南方向的水平剪切一致。根据周围地幔结构的层析成像数据,我们认为这种西南向流动可能与撞击地核-地幔边界的俯冲板块残余有关。探测到的超低速度区位于这一各向异性区域的西南边缘,因此可能受到周边地区强烈地幔变形的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
期刊最新文献
A case for pronunciation guides for place names in scientific publications Author Correction: No progress on diversity in 40 years Polar diatoms fade in the twilight zone Sulfur speciation matters Sulfur species and gold transport in arc magmatic fluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1