Pub Date : 2025-02-18DOI: 10.1038/s41561-025-01648-w
Allie N. Coonin, Harriet C. P. Lau, Sophie Coulson
Over the last deglaciation, global sea level rose by ~120–130 m, 10–20 m of which was attributed to a singular, catastrophic event known as Meltwater Pulse 1A (MWP-1A) that spanned at most 500 years approximately 14.6 kyr ago. Given data limitations and simplified models of Earth deformation, previous studies have struggled to determine the ice sources responsible for MWP-1A, its timing and, consequently, the impacts on global climate. With the expansion of palaeo sea-level records and growing consensus that more complex Earth deformation occurs over MWP-1A timescales, revisiting MWP-1A is timely. Here we resolve a sequence of ice loss over MWP-1A using a spatiotemporal sea-level fingerprinting approach constrained by temporal variations across sea-level data that fully models transient viscoelastic deformation, resulting in a space–time melt evolution. Our favoured sequence of ice sheet melting begins with the Laurentide contributing ~3 m (~14.6–14.2 kyr ago), followed by Eurasia and West Antarctica contributing ~7 m and ~5 m, respectively (~14.35–14.2 kyr ago). This scenario is consistent with proxy data that suggest a minimal Laurentide contribution and large retreat of the Eurasian Ice Sheet Complex. Our MWP-1A ice evolution demands the revision of global ice histories and illustrates deformation feedbacks that are relevant for modern ice collapse and sea-level rise.
{"title":"Meltwater Pulse 1A sea-level-rise patterns explained by global cascade of ice loss","authors":"Allie N. Coonin, Harriet C. P. Lau, Sophie Coulson","doi":"10.1038/s41561-025-01648-w","DOIUrl":"https://doi.org/10.1038/s41561-025-01648-w","url":null,"abstract":"<p>Over the last deglaciation, global sea level rose by ~120–130 m, 10–20 m of which was attributed to a singular, catastrophic event known as Meltwater Pulse 1A (MWP-1A) that spanned at most 500 years approximately 14.6 kyr ago. Given data limitations and simplified models of Earth deformation, previous studies have struggled to determine the ice sources responsible for MWP-1A, its timing and, consequently, the impacts on global climate. With the expansion of palaeo sea-level records and growing consensus that more complex Earth deformation occurs over MWP-1A timescales, revisiting MWP-1A is timely. Here we resolve a sequence of ice loss over MWP-1A using a spatiotemporal sea-level fingerprinting approach constrained by temporal variations across sea-level data that fully models transient viscoelastic deformation, resulting in a space–time melt evolution. Our favoured sequence of ice sheet melting begins with the Laurentide contributing ~3 m (~14.6–14.2 kyr ago), followed by Eurasia and West Antarctica contributing ~7 m and ~5 m, respectively (~14.35–14.2 kyr ago). This scenario is consistent with proxy data that suggest a minimal Laurentide contribution and large retreat of the Eurasian Ice Sheet Complex. Our MWP-1A ice evolution demands the revision of global ice histories and illustrates deformation feedbacks that are relevant for modern ice collapse and sea-level rise.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"1 1","pages":""},"PeriodicalIF":18.3,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-17DOI: 10.1038/s41561-025-01650-2
Chenyang Bi, Gabriel Isaacman-VanWertz
Reactive organic carbon species are important fuel for atmospheric chemical reactions, including the formation of secondary organic aerosol. However, in parallel to atmospheric oxidation processes, deposition can remove compounds from the atmosphere and impact downstream environments. To understand the impact of deposition on atmospheric oxidation, we present a framework for predicting and visualizing the fate of a molecule on the basis of the physicochemical properties of compounds (Henry’s law constant, vapour pressure and reaction rate constants), which are used to estimate timescales for oxidation and deposition. By implementing our deposition rates in chemical models, we show that deposition substantially suppresses atmospheric reactivity and aerosol formation by removing early-generation products and preventing the formation of large fractions (up to 90%) of downstream, late-generation compounds. Deposition is frequently missing in the laboratory experiments and detailed chemical modelling, which probably biases our understanding of atmospheric composition.
{"title":"Formation of late-generation atmospheric compounds inhibited by rapid deposition","authors":"Chenyang Bi, Gabriel Isaacman-VanWertz","doi":"10.1038/s41561-025-01650-2","DOIUrl":"https://doi.org/10.1038/s41561-025-01650-2","url":null,"abstract":"<p>Reactive organic carbon species are important fuel for atmospheric chemical reactions, including the formation of secondary organic aerosol. However, in parallel to atmospheric oxidation processes, deposition can remove compounds from the atmosphere and impact downstream environments. To understand the impact of deposition on atmospheric oxidation, we present a framework for predicting and visualizing the fate of a molecule on the basis of the physicochemical properties of compounds (Henry’s law constant, vapour pressure and reaction rate constants), which are used to estimate timescales for oxidation and deposition. By implementing our deposition rates in chemical models, we show that deposition substantially suppresses atmospheric reactivity and aerosol formation by removing early-generation products and preventing the formation of large fractions (up to 90%) of downstream, late-generation compounds. Deposition is frequently missing in the laboratory experiments and detailed chemical modelling, which probably biases our understanding of atmospheric composition.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"1 1","pages":""},"PeriodicalIF":18.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-12DOI: 10.1038/s41561-025-01646-y
Natural gradients across surface ocean regions show that changes in carbonate chemistry projected for ocean alkalinity enhancement could promote the proliferation of calcifying phytoplankton. This shift would increase an alkalinity sink, thus reducing the efficiency of ocean alkalinity enhancement as a CO2 removal method.
{"title":"Pelagic calcifier proliferation along surface ocean gradients in carbonate chemistry","authors":"","doi":"10.1038/s41561-025-01646-y","DOIUrl":"https://doi.org/10.1038/s41561-025-01646-y","url":null,"abstract":"Natural gradients across surface ocean regions show that changes in carbonate chemistry projected for ocean alkalinity enhancement could promote the proliferation of calcifying phytoplankton. This shift would increase an alkalinity sink, thus reducing the efficiency of ocean alkalinity enhancement as a CO2 removal method.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"21 1","pages":""},"PeriodicalIF":18.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-12DOI: 10.1038/s41561-025-01644-0
N. Lehmann, L. T. Bach
Ocean alkalinity enhancement is a widely considered approach for marine CO2 removal. Alkalinity enhancement sequesters atmospheric CO2 by shifting the seawater carbonate equilibrium from CO2 towards bicarbonate and carbonate ions. Such re-equilibration has been hypothesized to benefit calcifying organisms, whose increased calcification could strongly reduce the efficiency of alkalinity enhancement. Here we use global ocean satellite data to constrain the sensitivity of coccolithophores—an important group of calcifying phytoplankton—to natural gradients of seawater carbonate chemistry. We show that the ratio of particulate inorganic to particulate organic carbon, reflecting the balance of calcifying versus non-calcifying phytoplankton, is influenced by environmental drivers, including nutrient stoichiometry and carbon substrate within biogeochemical provinces. Across biogeochemical provinces, however, this ratio persistently correlates with carbonate chemistry through combined influences of carbon substrate availability and proton inhibition of calcification. We estimate that extreme alkalinity enhancement may promote the proliferation of coccolithophores, thereby reducing the CO2 removal potential of ocean alkalinity enhancement by 2–29% by 2100. However, less extreme alkalinity enhancement may only mitigate for adverse acidification effects on coccolithophores. Our findings demonstrate the importance of considering large-scale biogeochemical feedbacks when evaluating the efficiency of ocean alkalinity enhancement.
{"title":"Global carbonate chemistry gradients reveal a negative feedback on ocean alkalinity enhancement","authors":"N. Lehmann, L. T. Bach","doi":"10.1038/s41561-025-01644-0","DOIUrl":"https://doi.org/10.1038/s41561-025-01644-0","url":null,"abstract":"<p>Ocean alkalinity enhancement is a widely considered approach for marine CO<sub>2</sub> removal. Alkalinity enhancement sequesters atmospheric CO<sub>2</sub> by shifting the seawater carbonate equilibrium from CO<sub>2</sub> towards bicarbonate and carbonate ions. Such re-equilibration has been hypothesized to benefit calcifying organisms, whose increased calcification could strongly reduce the efficiency of alkalinity enhancement. Here we use global ocean satellite data to constrain the sensitivity of coccolithophores—an important group of calcifying phytoplankton—to natural gradients of seawater carbonate chemistry. We show that the ratio of particulate inorganic to particulate organic carbon, reflecting the balance of calcifying versus non-calcifying phytoplankton, is influenced by environmental drivers, including nutrient stoichiometry and carbon substrate within biogeochemical provinces. Across biogeochemical provinces, however, this ratio persistently correlates with carbonate chemistry through combined influences of carbon substrate availability and proton inhibition of calcification. We estimate that extreme alkalinity enhancement may promote the proliferation of coccolithophores, thereby reducing the CO<sub>2</sub> removal potential of ocean alkalinity enhancement by 2–29% by 2100. However, less extreme alkalinity enhancement may only mitigate for adverse acidification effects on coccolithophores. Our findings demonstrate the importance of considering large-scale biogeochemical feedbacks when evaluating the efficiency of ocean alkalinity enhancement.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"50 1","pages":""},"PeriodicalIF":18.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11DOI: 10.1038/s41561-025-01651-1
Sustained monitoring is essential for assessing volcanic hazards. Integration with igneous petrology is key to linking monitoring data to underlying magmatic processes.
{"title":"Signs of eruption decoded with petrology","authors":"","doi":"10.1038/s41561-025-01651-1","DOIUrl":"10.1038/s41561-025-01651-1","url":null,"abstract":"Sustained monitoring is essential for assessing volcanic hazards. Integration with igneous petrology is key to linking monitoring data to underlying magmatic processes.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 2","pages":"107-107"},"PeriodicalIF":15.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41561-025-01651-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11DOI: 10.1038/s41561-024-01633-9
Tobias G. Bamforth
Rhabdophane contains high concentrations of the rare earth elements, yet Tobias Bamforth argues that it remains underappreciated as a significant host of these critical metals.
{"title":"Rare-earth-rich rhabdophane","authors":"Tobias G. Bamforth","doi":"10.1038/s41561-024-01633-9","DOIUrl":"10.1038/s41561-024-01633-9","url":null,"abstract":"Rhabdophane contains high concentrations of the rare earth elements, yet Tobias Bamforth argues that it remains underappreciated as a significant host of these critical metals.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 2","pages":"117-117"},"PeriodicalIF":15.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1038/s41561-025-01642-2
John E. Vidale, Wei Wang, Ruoyan Wang, Guanning Pang, Keith Koper
The inner core has been inferred to change its rotation rate or shape over years to decades since the discovery of temporal variability in seismic waves from repeating earthquakes that travelled through the inner core. Recent work confirmed that the inner core rotated faster and then slower than the rest of Earth in the last few decades; this work analysed inner-core-traversing (PKIKP) seismic waves recorded by the Eielson (ILAR) and Yellowknife (YKA) arrays in northern North America from 121 repeating earthquake pairs between 1991 and 2023 in the South Sandwich Islands. Here we extend this set of repeating earthquakes and compare pairs at times when the inner core re-occupied the same position, revealing non-rotational changes at YKA but not ILAR between 2004 and 2008. We propose that these changes originate in the shallow inner core, and so affect the inner-core-grazing YKA ray paths more than the deeper-bottoming ray paths to ILAR. We thus resolve the long-standing debate on whether temporal variability in PKIKP waves results from rotation or more local action near the inner-core boundary: it is tentatively both. The changes near the inner-core boundary most likely result from viscous deformation driven by coupling between boundary topography and mantle density anomalies or traction on the inner core from outer-core convection.
{"title":"Annual-scale variability in both the rotation rate and near surface of Earth’s inner core","authors":"John E. Vidale, Wei Wang, Ruoyan Wang, Guanning Pang, Keith Koper","doi":"10.1038/s41561-025-01642-2","DOIUrl":"https://doi.org/10.1038/s41561-025-01642-2","url":null,"abstract":"<p>The inner core has been inferred to change its rotation rate or shape over years to decades since the discovery of temporal variability in seismic waves from repeating earthquakes that travelled through the inner core. Recent work confirmed that the inner core rotated faster and then slower than the rest of Earth in the last few decades; this work analysed inner-core-traversing (PKIKP) seismic waves recorded by the Eielson (ILAR) and Yellowknife (YKA) arrays in northern North America from 121 repeating earthquake pairs between 1991 and 2023 in the South Sandwich Islands. Here we extend this set of repeating earthquakes and compare pairs at times when the inner core re-occupied the same position, revealing non-rotational changes at YKA but not ILAR between 2004 and 2008. We propose that these changes originate in the shallow inner core, and so affect the inner-core-grazing YKA ray paths more than the deeper-bottoming ray paths to ILAR. We thus resolve the long-standing debate on whether temporal variability in PKIKP waves results from rotation or more local action near the inner-core boundary: it is tentatively both. The changes near the inner-core boundary most likely result from viscous deformation driven by coupling between boundary topography and mantle density anomalies or traction on the inner core from outer-core convection.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"84 1","pages":""},"PeriodicalIF":18.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1038/s41561-025-01647-x
The rigid-body motion of Earth’s wandering inner core has now been reliably tracked over the past 20 years. With this knowledge, we can compare seismic recordings obtained when the inner core returns to the same position after moving for several years. More is changing than just the inner core position; the soft outermost inner core probably deforms.
{"title":"Earth’s inner core is changing in shape as well as in rotation rate","authors":"","doi":"10.1038/s41561-025-01647-x","DOIUrl":"https://doi.org/10.1038/s41561-025-01647-x","url":null,"abstract":"The rigid-body motion of Earth’s wandering inner core has now been reliably tracked over the past 20 years. With this knowledge, we can compare seismic recordings obtained when the inner core returns to the same position after moving for several years. More is changing than just the inner core position; the soft outermost inner core probably deforms.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"13 1","pages":""},"PeriodicalIF":18.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1038/s41561-025-01649-9
Meng Guo, Jun Korenaga
Ocean pH is a fundamental property regulating various aspects of Earth system evolution. However, early ocean pH remains controversial, with estimates ranging from strongly acidic to alkaline. Here we develop a model integrating global carbon cycling with ocean geochemistry, and incorporating continental growth and mantle thermal evolution. By coupling global carbon cycle with ocean charge balance, and by using solid Earth processes of mantle degassing and crustal evolution to specify the history of volatile distribution and ocean chemistry, we show that a rapid increase in ocean pH is likely during the Hadean to the early Archaean eons, with pH evolving from 5 to neutral by approximately 4.0 Gyr ago. This rapid pH evolution is attributed primarily to elevated rates of both seafloor and continental weathering during the Hadean. This acceleration in weathering rates originates in the unique aspects of Hadean geodynamics, including rapid crust formation, different crustal lithology and fast plate motion. Earth probably transformed from a hostile state to a habitable one by the end of the Hadean, approximately 4.0 Gyr ago, with important implications for planetary habitability and the origin of life.
{"title":"Rapid rise of early ocean pH under elevated weathering rates","authors":"Meng Guo, Jun Korenaga","doi":"10.1038/s41561-025-01649-9","DOIUrl":"https://doi.org/10.1038/s41561-025-01649-9","url":null,"abstract":"<p>Ocean pH is a fundamental property regulating various aspects of Earth system evolution. However, early ocean pH remains controversial, with estimates ranging from strongly acidic to alkaline. Here we develop a model integrating global carbon cycling with ocean geochemistry, and incorporating continental growth and mantle thermal evolution. By coupling global carbon cycle with ocean charge balance, and by using solid Earth processes of mantle degassing and crustal evolution to specify the history of volatile distribution and ocean chemistry, we show that a rapid increase in ocean pH is likely during the Hadean to the early Archaean eons, with pH evolving from 5 to neutral by approximately 4.0 Gyr ago. This rapid pH evolution is attributed primarily to elevated rates of both seafloor and continental weathering during the Hadean. This acceleration in weathering rates originates in the unique aspects of Hadean geodynamics, including rapid crust formation, different crustal lithology and fast plate motion. Earth probably transformed from a hostile state to a habitable one by the end of the Hadean, approximately 4.0 Gyr ago, with important implications for planetary habitability and the origin of life.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"84 1","pages":""},"PeriodicalIF":18.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1038/s41561-024-01629-5
Alireza Chogani, Helen E. King, Benjamin Tutolo, Aleksandar Živković, Oliver Plümper
Water is a principal component of Earth’s fluids, and its interaction with rocks governs lithospheric geochemical and geodynamic processes. Water–rock interactions are crucial in societally relevant resource management, including subsurface extraction and storage of energy, the deep carbon cycle and generating critical metal deposits. The prevailing view is that fluids navigate through the lithosphere without being influenced by the distinct properties that arise from matter confined at the nanoscale. Here we use electron microscopy and neutron scattering data to show that a diverse range of lithospheric rocks, including sandstones, peridotites and serpentinites, consistently show nanoporosity, predominantly with pore sizes < 100 nanometres. Using molecular dynamics simulations, we demonstrate that water’s dielectric permittivity—a fundamental property that governs its geochemical behaviour—diverges in nanoconfinement from its bulk counterpart under conditions ranging from ambient to extremes of 700 °C and 5 GPa. Our geochemical simulations suggest that changes in water permittivity due to confinement will decrease mineral solubility, a process that is not currently considered in models of fluid–rock interactions. Given that permittivity is also intimately linked to ion speciation, pore-size-dependent properties should be expected to exert a primary influence on rock reactivity and the geochemical evolution of fluids during fluid–rock interactions. Diverse lithospheric rocks show nanoporosity that changes the geochemistry of fluids and rock reactivity during fluid–rock interactions, according to a study including electron microscopy, molecular dynamics and thermodynamic modelling.
水是地球流体的主要成分,它与岩石的相互作用影响着岩石圈的地球化学和地球动力过程。水与岩石的相互作用对社会相关的资源管理至关重要,包括地下能源的开采和储存、深层碳循环以及关键金属矿床的生成。目前的主流观点认为,流体在岩石圈中穿行时不会受到纳米尺度物质所产生的独特性质的影响。在这里,我们利用电子显微镜和中子散射数据表明,各种岩石圈岩石,包括砂岩、橄榄岩和蛇纹岩,都持续显示出纳米孔隙度,主要是孔隙大小< 100纳米。利用分子动力学模拟,我们证明了水的介电常数--支配其地球化学行为的基本特性--在从环境到 700 °C 和 5 GPa 的极端条件下,其纳米孔隙率与其体积对应物存在差异。我们的地球化学模拟表明,封闭导致的水介电常数变化将降低矿物溶解度,而这一过程目前在流体-岩石相互作用模型中尚未被考虑。鉴于介电常数还与离子种类密切相关,因此在流体-岩石相互作用过程中,与孔隙大小相关的性质应该会对岩石反应性和流体的地球化学演化产生主要影响。
{"title":"Geochemistry of lithospheric aqueous fluids modified by nanoconfinement","authors":"Alireza Chogani, Helen E. King, Benjamin Tutolo, Aleksandar Živković, Oliver Plümper","doi":"10.1038/s41561-024-01629-5","DOIUrl":"10.1038/s41561-024-01629-5","url":null,"abstract":"Water is a principal component of Earth’s fluids, and its interaction with rocks governs lithospheric geochemical and geodynamic processes. Water–rock interactions are crucial in societally relevant resource management, including subsurface extraction and storage of energy, the deep carbon cycle and generating critical metal deposits. The prevailing view is that fluids navigate through the lithosphere without being influenced by the distinct properties that arise from matter confined at the nanoscale. Here we use electron microscopy and neutron scattering data to show that a diverse range of lithospheric rocks, including sandstones, peridotites and serpentinites, consistently show nanoporosity, predominantly with pore sizes < 100 nanometres. Using molecular dynamics simulations, we demonstrate that water’s dielectric permittivity—a fundamental property that governs its geochemical behaviour—diverges in nanoconfinement from its bulk counterpart under conditions ranging from ambient to extremes of 700 °C and 5 GPa. Our geochemical simulations suggest that changes in water permittivity due to confinement will decrease mineral solubility, a process that is not currently considered in models of fluid–rock interactions. Given that permittivity is also intimately linked to ion speciation, pore-size-dependent properties should be expected to exert a primary influence on rock reactivity and the geochemical evolution of fluids during fluid–rock interactions. Diverse lithospheric rocks show nanoporosity that changes the geochemistry of fluids and rock reactivity during fluid–rock interactions, according to a study including electron microscopy, molecular dynamics and thermodynamic modelling.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 2","pages":"191-196"},"PeriodicalIF":15.7,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41561-024-01629-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}