Unveiling evapotranspiration patterns and energy balance in a subalpine forest of the Qinghai–Tibet Plateau: observations and analysis from an eddy covariance system

IF 3.4 2区 农林科学 Q1 FORESTRY Journal of Forestry Research Pub Date : 2024-02-25 DOI:10.1007/s11676-024-01708-8
{"title":"Unveiling evapotranspiration patterns and energy balance in a subalpine forest of the Qinghai–Tibet Plateau: observations and analysis from an eddy covariance system","authors":"","doi":"10.1007/s11676-024-01708-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems. To understand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qinghai–Tibet Plateau, an open-path eddy covariance system was set up to monitor the forest from November 2020 to October 2021 in a core area of the Three Parallel Rivers in the Qinghai–Tibet Plateau. The results show that the evapotranspiration peaked daily, the maximum occurring between 11:00 and 15:00. Environmental factors had significant effects on evapotranspiration, among them, net radiation the greatest (<em>R</em><sup>2</sup> = 0.487), and relative humidity the least (<em>R</em><sup>2</sup> = 0.001). The energy flux varied considerably in different seasons and sensible heat flux accounted for the main part of turbulent energy. The energy balance ratio in the dormant season was less than that in the growing season, and there is an energy imbalance at the site on an annual time scale.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-024-01708-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems. To understand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qinghai–Tibet Plateau, an open-path eddy covariance system was set up to monitor the forest from November 2020 to October 2021 in a core area of the Three Parallel Rivers in the Qinghai–Tibet Plateau. The results show that the evapotranspiration peaked daily, the maximum occurring between 11:00 and 15:00. Environmental factors had significant effects on evapotranspiration, among them, net radiation the greatest (R2 = 0.487), and relative humidity the least (R2 = 0.001). The energy flux varied considerably in different seasons and sensible heat flux accounted for the main part of turbulent energy. The energy balance ratio in the dormant season was less than that in the growing season, and there is an energy imbalance at the site on an annual time scale.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示青藏高原亚高山森林的蒸散模式和能量平衡:利用涡度协方差系统进行观测和分析
摘要 蒸发蒸腾是表征生态系统水循环的一个重要参数。为了解青藏高原东南部亚高山森林的蒸散和能量平衡特性,建立了一套开路涡度协方差系统,从 2020 年 11 月至 2021 年 10 月对青藏高原三江并流核心区的森林进行了监测。结果表明,蒸散量每天都达到峰值,最大值出现在 11:00 至 15:00。环境因素对蒸散量有明显影响,其中净辐射影响最大(R2 = 0.487),相对湿度影响最小(R2 = 0.001)。不同季节的能量通量变化很大,显热通量占湍流能量的主要部分。休眠季的能量平衡比小于生长季的能量平衡比,因此该地点在年时间尺度上存在能量失衡现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
3.30%
发文量
2538
期刊介绍: The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects: Basic Science of Forestry, Forest biometrics, Forest soils, Forest hydrology, Tree physiology, Forest biomass, carbon, and bioenergy, Forest biotechnology and molecular biology, Forest Ecology, Forest ecology, Forest ecological services, Restoration ecology, Forest adaptation to climate change, Wildlife ecology and management, Silviculture and Forest Management, Forest genetics and tree breeding, Silviculture, Forest RS, GIS, and modeling, Forest management, Forest Protection, Forest entomology and pathology, Forest fire, Forest resources conservation, Forest health monitoring and assessment, Wood Science and Technology, Wood Science and Technology.
期刊最新文献
Applying palaeoecological analogues to contemporary challenges: community-level effects of canopy gaps caused by systematic decline of a prevalent tree species A stacking-based model for the spread of Botryosphaeria laricina Leaf functional traits and ecological strategies of common plant species in evergreen broad-leaved forests on Huangshan Mountain Characteristics and expression of heat shock gene Lghsp17.4 in Lenzites gibbosa, a white rot fungus of wood Tree diversity drives understory carbon storage rather than overstory carbon storage across forest types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1