KNL1 and NDC80 represent new universal markers for the detection of functional centromeres in plants

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Chromosome Research Pub Date : 2024-02-26 DOI:10.1007/s10577-024-09747-x
Ludmila Oliveira, Pavel Neumann, Yennifer Mata-Sucre, Yi-Tzu Kuo, André Marques, Veit Schubert, Jiří Macas
{"title":"KNL1 and NDC80 represent new universal markers for the detection of functional centromeres in plants","authors":"Ludmila Oliveira, Pavel Neumann, Yennifer Mata-Sucre, Yi-Tzu Kuo, André Marques, Veit Schubert, Jiří Macas","doi":"10.1007/s10577-024-09747-x","DOIUrl":null,"url":null,"abstract":"<p>Centromere is the chromosomal site of kinetochore assembly and microtubule attachment for chromosome segregation. Given its importance, markers that allow specific labeling of centromeric chromatin throughout the cell cycle and across all chromosome types are sought for facilitating various centromere studies. Antibodies against the N-terminal region of CENH3 are commonly used for this purpose, since CENH3 is the near-universal marker of functional centromeres. However, because the N-terminal region of CENH3 is highly variable among plant species, antibodies directed against this region usually function only in a small group of closely related species. As a more versatile alternative, we present here antibodies targeted to the conserved domains of two outer kinetochore proteins, KNL1 and NDC80. Sequence comparison of these domains across more than 350 plant species revealed a high degree of conservation, particularly within a six amino acid motif, FFGPVS in KNL1, suggesting that both antibodies would function in a wide range of plant species. This assumption was confirmed by immunolabeling experiments in angiosperm (monocot and dicot) and gymnosperm species, including those with mono-, holo-, and meta-polycentric chromosomes. In addition to centromere labeling on condensed chromosomes during cell division, both antibodies detected the corresponding regions in the interphase nuclei of most species tested. These results demonstrated that KNL1 and NDC80 are better suited for immunolabeling centromeres than CENH3, because antibodies against these proteins offer incomparably greater versatility across different plant species which is particularly convenient for studying the organization and function of the centromere in non-model species.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"123 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-024-09747-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Centromere is the chromosomal site of kinetochore assembly and microtubule attachment for chromosome segregation. Given its importance, markers that allow specific labeling of centromeric chromatin throughout the cell cycle and across all chromosome types are sought for facilitating various centromere studies. Antibodies against the N-terminal region of CENH3 are commonly used for this purpose, since CENH3 is the near-universal marker of functional centromeres. However, because the N-terminal region of CENH3 is highly variable among plant species, antibodies directed against this region usually function only in a small group of closely related species. As a more versatile alternative, we present here antibodies targeted to the conserved domains of two outer kinetochore proteins, KNL1 and NDC80. Sequence comparison of these domains across more than 350 plant species revealed a high degree of conservation, particularly within a six amino acid motif, FFGPVS in KNL1, suggesting that both antibodies would function in a wide range of plant species. This assumption was confirmed by immunolabeling experiments in angiosperm (monocot and dicot) and gymnosperm species, including those with mono-, holo-, and meta-polycentric chromosomes. In addition to centromere labeling on condensed chromosomes during cell division, both antibodies detected the corresponding regions in the interphase nuclei of most species tested. These results demonstrated that KNL1 and NDC80 are better suited for immunolabeling centromeres than CENH3, because antibodies against these proteins offer incomparably greater versatility across different plant species which is particularly convenient for studying the organization and function of the centromere in non-model species.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KNL1 和 NDC80 是检测植物功能性中心粒的新通用标记
中心粒是动点核组装和微管附着的染色体部位,用于染色体分离。鉴于其重要性,人们正在寻找能在整个细胞周期和所有染色体类型中特异性标记中心染色质的标记物,以促进各种中心粒研究。针对 CENH3 N 端区域的抗体通常用于此目的,因为 CENH3 几乎是功能性中心粒的通用标记。然而,由于 CENH3 的 N 端区域在植物物种之间存在很大差异,针对该区域的抗体通常只能在一小部分近缘物种中发挥作用。作为一种用途更广的替代方法,我们在此介绍针对两种外动点细胞蛋白(KNL1 和 NDC80)保守结构域的抗体。这些结构域在 350 多个植物物种中的序列比较显示出高度的保守性,尤其是在 KNL1 中的 FFGPVS 这六个氨基酸基团中,这表明这两种抗体将在广泛的植物物种中发挥作用。这一假设在被子植物(单子叶植物和双子叶植物)和裸子植物(包括具有单中心、全中心和元多中心染色体的植物)的免疫标记实验中得到了证实。在细胞分裂过程中,除了凝集染色体上的中心粒标记外,这两种抗体还能检测到大多数被测物种间期细胞核中的相应区域。这些结果表明,与 CENH3 相比,KNL1 和 NDC80 更适合用于中心粒的免疫标记,因为针对这些蛋白的抗体在不同植物物种中具有无与伦比的通用性,这对研究非模式物种中心粒的组织和功能尤为方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chromosome Research
Chromosome Research 生物-生化与分子生物学
CiteScore
4.70
自引率
3.80%
发文量
31
审稿时长
1 months
期刊介绍: Chromosome Research publishes manuscripts from work based on all organisms and encourages submissions in the following areas including, but not limited, to: · Chromosomes and their linkage to diseases; · Chromosome organization within the nucleus; · Chromatin biology (transcription, non-coding RNA, etc); · Chromosome structure, function and mechanics; · Chromosome and DNA repair; · Epigenetic chromosomal functions (centromeres, telomeres, replication, imprinting, dosage compensation, sex determination, chromosome remodeling); · Architectural/epigenomic organization of the genome; · Functional annotation of the genome; · Functional and comparative genomics in plants and animals; · Karyology studies that help resolve difficult taxonomic problems or that provide clues to fundamental mechanisms of genome and karyotype evolution in plants and animals; · Mitosis and Meiosis; · Cancer cytogenomics.
期刊最新文献
Comparative karyotype analysis provides cytogenetic evidence for the origin of sweetpotato. A familial chromosome 4p16.3 terminal microdeletion that does not cause Wolf-Hirschhorn (4p-) syndrome. Cdk8 and Hira mutations trigger X chromosome elimination in naive female hybrid mouse embryonic stem cells. Modeling properties of chromosome territories using polymer filaments in diverse confinement geometries. Primary cell cultures from the single-chromosome ant Myrmecia croslandi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1