Outdoor LiDAR-inertial SLAM using ground constraints

IF 1.9 4区 计算机科学 Q3 ROBOTICS Robotica Pub Date : 2024-02-26 DOI:10.1017/s0263574724000237
Yating Hu, Qigao Zhou, Zhejun Miao, Hang Yuan, Shuang Liu
{"title":"Outdoor LiDAR-inertial SLAM using ground constraints","authors":"Yating Hu, Qigao Zhou, Zhejun Miao, Hang Yuan, Shuang Liu","doi":"10.1017/s0263574724000237","DOIUrl":null,"url":null,"abstract":"<p>The current LiDAR-inertial odometry is prone to cumulative Z-axis error when it runs for a long time. This error can easily lead to the failure to detect the loop-closing in the correct scenario. In this paper, a ground-constrained LiDAR-inertial SLAM is proposed to solve this problem. Reasonable constraints on the ground motion of the mobile robot are incorporated to limit the Z-axis drift error. At the same time, considering the influence of initial positioning error on navigation, a keyframe selection strategy is designed to effectively improve the flatness and accuracy of positioning and the efficiency of loop detection. If GNSS is available, the GNSS factor is added to eliminate the cumulative error of the trajectory. Finally, a large number of experiments are carried out on the self-developed robot platform to verify the effectiveness of the algorithm. The results show that this method can effectively improve location accuracy in outdoor environments, especially in environments of feature degradation and large scale.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000237","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The current LiDAR-inertial odometry is prone to cumulative Z-axis error when it runs for a long time. This error can easily lead to the failure to detect the loop-closing in the correct scenario. In this paper, a ground-constrained LiDAR-inertial SLAM is proposed to solve this problem. Reasonable constraints on the ground motion of the mobile robot are incorporated to limit the Z-axis drift error. At the same time, considering the influence of initial positioning error on navigation, a keyframe selection strategy is designed to effectively improve the flatness and accuracy of positioning and the efficiency of loop detection. If GNSS is available, the GNSS factor is added to eliminate the cumulative error of the trajectory. Finally, a large number of experiments are carried out on the self-developed robot platform to verify the effectiveness of the algorithm. The results show that this method can effectively improve location accuracy in outdoor environments, especially in environments of feature degradation and large scale.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用地面约束的室外激光雷达-惯性 SLAM
目前的激光雷达-惯性里程计在长时间运行时容易产生累积 Z 轴误差。这种误差很容易导致无法在正确的情况下检测到闭环。本文提出了一种地面约束激光雷达-惯性 SLAM 来解决这一问题。本文对移动机器人的地面运动进行了合理的约束,以限制 Z 轴漂移误差。同时,考虑到初始定位误差对导航的影响,设计了一种关键帧选择策略,以有效提高定位的平整度和精度以及环路检测的效率。如果有 GNSS,则加入 GNSS 因子以消除轨迹的累积误差。最后,在自主研发的机器人平台上进行了大量实验,以验证算法的有效性。结果表明,该方法能有效提高室外环境下的定位精度,尤其是在特征退化和大尺度环境下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotica
Robotica 工程技术-机器人学
CiteScore
4.50
自引率
22.20%
发文量
181
审稿时长
9.9 months
期刊介绍: Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.
期刊最新文献
3D dynamics and control of a snake robot in uncertain underwater environment An application of natural matrices to the dynamic balance problem of planar parallel manipulators Control of stance-leg motion and zero-moment point for achieving perfect upright stationary state of rimless wheel type walker with parallel linkage legs Trajectory tracking control of a mobile robot using fuzzy logic controller with optimal parameters High accuracy hybrid kinematic modeling for serial robotic manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1