首页 > 最新文献

Robotica最新文献

英文 中文
Combining spatial clustering and tour planning for efficient full area exploration 结合空间聚类和游览规划,实现高效的全区域探索
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-09-13 DOI: 10.1017/s0263574724001085
Jiatong Bao, Sultan Mamun, Jiawei Bao, Wenbing Zhang, Yuequan Yang, Aiguo Song

Autonomous exploration in unknown environments has become a critical capability of mobile robots. Many methods often suffer from problems such as exploration goal selection based solely on information gain and inefficient tour optimization. Recent reinforcement learning-based methods do not consider full area coverage and the performance of transferring learned policy to new environments cannot be guaranteed. To address these issues, a dual-stage exploration method has been proposed, which combines spatial clustering of possible exploration goals and Traveling Salesman Problem (TSP) based tour planning on both local and global scales, aiming for efficient full-area exploration in highly convoluted environments. Our method involves two stages: exploration and relocation. During the exploration stage, we introduce to generate local navigation goal candidates straight from clusters of all possible local exploration goals. The local navigation goal is determined through tour planning, utilizing the TSP framework. Moreover, during the relocation stage, we suggest clustering all possible global exploration goals and applying TSP-based tour planning to efficiently direct the robot toward previously detected but yet-to-be-explored areas. The proposed method is validated in various challenging simulated and real-world environments. Experimental results demonstrate its effectiveness and efficiency. Videos and code are available at https://github.com/JiatongBao/exploration.

在未知环境中进行自主探索已成为移动机器人的一项重要能力。许多方法往往存在探索目标选择仅基于信息增益、巡回优化效率低等问题。最新的基于强化学习的方法没有考虑全区域覆盖,而且无法保证将所学策略迁移到新环境中的性能。为了解决这些问题,我们提出了一种双阶段探索方法,它结合了可能探索目标的空间聚类和基于旅行推销员问题(TSP)的局部和全局巡回规划,目的是在高度复杂的环境中进行高效的全区域探索。我们的方法包括两个阶段:探索和迁移。在探索阶段,我们从所有可能的本地探索目标簇中直接生成本地导航目标候选。本地导航目标是通过巡回规划确定的,利用的是 TSP 框架。此外,在重新定位阶段,我们建议对所有可能的全局探索目标进行聚类,并应用基于 TSP 的巡回规划来有效地将机器人引向先前探测到但尚未探索的区域。我们在各种具有挑战性的模拟和现实环境中对所提出的方法进行了验证。实验结果证明了该方法的有效性和效率。视频和代码请访问 https://github.com/JiatongBao/exploration。
{"title":"Combining spatial clustering and tour planning for efficient full area exploration","authors":"Jiatong Bao, Sultan Mamun, Jiawei Bao, Wenbing Zhang, Yuequan Yang, Aiguo Song","doi":"10.1017/s0263574724001085","DOIUrl":"https://doi.org/10.1017/s0263574724001085","url":null,"abstract":"<p>Autonomous exploration in unknown environments has become a critical capability of mobile robots. Many methods often suffer from problems such as exploration goal selection based solely on information gain and inefficient tour optimization. Recent reinforcement learning-based methods do not consider full area coverage and the performance of transferring learned policy to new environments cannot be guaranteed. To address these issues, a dual-stage exploration method has been proposed, which combines spatial clustering of possible exploration goals and Traveling Salesman Problem (TSP) based tour planning on both local and global scales, aiming for efficient full-area exploration in highly convoluted environments. Our method involves two stages: exploration and relocation. During the exploration stage, we introduce to generate local navigation goal candidates straight from clusters of all possible local exploration goals. The local navigation goal is determined through tour planning, utilizing the TSP framework. Moreover, during the relocation stage, we suggest clustering all possible global exploration goals and applying TSP-based tour planning to efficiently direct the robot toward previously detected but yet-to-be-explored areas. The proposed method is validated in various challenging simulated and real-world environments. Experimental results demonstrate its effectiveness and efficiency. Videos and code are available at https://github.com/JiatongBao/exploration.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An online payload identification method based on parameter difference for industrial robots 基于参数差异的工业机器人在线有效载荷识别方法
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-09-13 DOI: 10.1017/s026357472400105x
Tian Xu, Hua Tuo, Qianqian Fang, Jie Chen, Jizhuang Fan, Debin Shan, Jie Zhao

Accurate online estimation of the payload parameters benefits robot control. In the existing approaches, however, on the one hand, only the linear friction model was used for online payload identification, which reduced the online estimation accuracy. On the other hand, the estimation models contain much noise because of using actual joint trajectory signals. In this article, a new estimation algorithm based on parameter difference for the payload dynamics is proposed. This method uses a nonlinear friction model for the online payload estimation instead of the traditionally linear one. In addition, it considers the commanded joint trajectory signals as the computation input to reduce the model noise. The main contribution of this article is to derive a symbolic relationship between the parameter difference and the payload parameters and then apply it to the online payload estimation. The robot base parameters without payload were identified offline and regarded as the prior information. The one with payload can be solved online by the recursive least squares method. The dynamics of the payload can be then solved online based on the numerical difference of the two parameter sets. Finally, experimental comparisons and a manual guidance application experiment are shown. The results confirm that our algorithm can improve the online payload estimation accuracy (especially the payload mass) and the manual guidance comfort.

对有效载荷参数进行准确的在线估计有利于机器人控制。然而,在现有方法中,一方面,在线有效载荷识别只使用线性摩擦模型,降低了在线估计精度。另一方面,由于使用的是实际的联合轨迹信号,估计模型中包含了很多噪声。本文提出了一种基于有效载荷动态参数差异的新估计算法。该方法使用非线性摩擦模型进行在线有效载荷估计,而不是传统的线性模型。此外,它还将指令联合轨迹信号作为计算输入,以减少模型噪声。本文的主要贡献在于推导出参数差和有效载荷参数之间的符号关系,并将其应用于在线有效载荷估计。不带有效载荷的机器人基本参数是离线确定的,被视为先验信息。有有效载荷的参数可通过递归最小二乘法在线求解。然后,根据两个参数集的数值差在线求解有效载荷的动态。最后,演示了实验对比和手动制导应用实验。结果证实,我们的算法可以提高在线有效载荷估计的准确性(尤其是有效载荷质量)和手动制导的舒适性。
{"title":"An online payload identification method based on parameter difference for industrial robots","authors":"Tian Xu, Hua Tuo, Qianqian Fang, Jie Chen, Jizhuang Fan, Debin Shan, Jie Zhao","doi":"10.1017/s026357472400105x","DOIUrl":"https://doi.org/10.1017/s026357472400105x","url":null,"abstract":"<p>Accurate online estimation of the payload parameters benefits robot control. In the existing approaches, however, on the one hand, only the linear friction model was used for online payload identification, which reduced the online estimation accuracy. On the other hand, the estimation models contain much noise because of using actual joint trajectory signals. In this article, a new estimation algorithm based on parameter difference for the payload dynamics is proposed. This method uses a nonlinear friction model for the online payload estimation instead of the traditionally linear one. In addition, it considers the commanded joint trajectory signals as the computation input to reduce the model noise. The main contribution of this article is to derive a symbolic relationship between the parameter difference and the payload parameters and then apply it to the online payload estimation. The robot base parameters without payload were identified offline and regarded as the prior information. The one with payload can be solved online by the recursive least squares method. The dynamics of the payload can be then solved online based on the numerical difference of the two parameter sets. Finally, experimental comparisons and a manual guidance application experiment are shown. The results confirm that our algorithm can improve the online payload estimation accuracy (especially the payload mass) and the manual guidance comfort.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a robotic gripper for casting sorting robots with rigid–flexible coupling structures 为具有刚柔耦合结构的浇铸分拣机器人设计机器人抓手
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-09-13 DOI: 10.1017/s0263574724001000
Cheng-jun Wang, Biao Cheng

In order to solve the problem of the insufficient adaptability of the current small- and medium-sized casting sorting robot gripper, we have designed a casting sorting robot bionic gripper with rigid–flexible coupling structures based on the robot topology theory. The second-order Yeoh model was used to statically model the clamping belt in the gripper to derive the relationship between the external input air pressure and the bending angle of the driving layer, and the feasibility of multiangle bending of the driving layer was verified by finite element analysis. The maximum gripping diameter of the gripper is 140 mm, and in order to test the adaptive gripping ability of the gripper, a prototype of the casting sorting robot gripper is prepared, and the pneumatic control system and human–machine interface of the gripper are designed. After several experimental analyses, the designed casting sorting robot gripper is characterized by strong adaptability and high robustness, with a maximum load capacity of 930 g and a maximum wrap angle of 296°, which can complete the gripping operation within 1 s, and the comprehensive gripping success rate reaches 96.4%. The casting sorting robot gripper designed in the paper can provide a reference for the design and optimization of various types of shaped workpiece gripping manipulators.

为解决目前中小型铸造分拣机器人抓手适应性不足的问题,我们基于机器人拓扑理论,设计了一种具有刚柔耦合结构的铸造分拣机器人仿生抓手。采用二阶 Yeoh 模型对夹持器中的夹持带进行静态建模,推导出外部输入气压与驱动层弯曲角度之间的关系,并通过有限元分析验证了驱动层多角度弯曲的可行性。机械手的最大抓取直径为 140 毫米,为了测试机械手的自适应抓取能力,制备了铸件分拣机器人机械手的原型,并设计了机械手的气动控制系统和人机界面。经过多次实验分析,所设计的铸造分拣机器人抓手具有适应性强、鲁棒性高的特点,最大承载能力为 930 g,最大包角为 296°,可在 1 s 内完成抓取操作,综合抓取成功率达到 96.4%。本文设计的铸造分拣机械手可为各类异形工件抓取机械手的设计和优化提供参考。
{"title":"Design of a robotic gripper for casting sorting robots with rigid–flexible coupling structures","authors":"Cheng-jun Wang, Biao Cheng","doi":"10.1017/s0263574724001000","DOIUrl":"https://doi.org/10.1017/s0263574724001000","url":null,"abstract":"<p>In order to solve the problem of the insufficient adaptability of the current small- and medium-sized casting sorting robot gripper, we have designed a casting sorting robot bionic gripper with rigid–flexible coupling structures based on the robot topology theory. The second-order Yeoh model was used to statically model the clamping belt in the gripper to derive the relationship between the external input air pressure and the bending angle of the driving layer, and the feasibility of multiangle bending of the driving layer was verified by finite element analysis. The maximum gripping diameter of the gripper is 140 mm, and in order to test the adaptive gripping ability of the gripper, a prototype of the casting sorting robot gripper is prepared, and the pneumatic control system and human–machine interface of the gripper are designed. After several experimental analyses, the designed casting sorting robot gripper is characterized by strong adaptability and high robustness, with a maximum load capacity of 930 g and a maximum wrap angle of 296°, which can complete the gripping operation within 1 s, and the comprehensive gripping success rate reaches 96.4%. The casting sorting robot gripper designed in the paper can provide a reference for the design and optimization of various types of shaped workpiece gripping manipulators.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DDPG-based path planning for cable-driven manipulators in multi-obstacle environments 多障碍物环境中基于 DDPG 的缆索驱动机械手路径规划
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-09-13 DOI: 10.1017/s0263574724001048
Dong Zhang, Renjie Ju, Zhengcai Cao

Hyper-redundant cable-driven manipulators (CDMs) are widely used for operations in confined spaces due to their slender bodies and multiple degrees of freedom. Most research focuses on their path following but not path planning. This work investigates a deep deterministic policy gradient (DDPG)-based path-planning algorithm for CDMs in multi-obstacle environments. To plan passable paths under many constraints, a DDPG algorithm is modified according to features of CDMs. To improve adaptability of planned paths, a specialized reward function is newly designed. In this function, such factors as smoothness, arrival time and distance are taken into account. Results of simulations and physical experiments are presented to demonstrate the performances of the proposed methods for planning paths of CDMs.

超冗余缆索驱动机械手(CDMs)因其纤细的机身和多个自由度而被广泛用于狭小空间内的操作。大多数研究都集中在它们的路径跟随上,而不是路径规划。这项工作研究了一种基于深度确定性策略梯度(DDPG)的路径规划算法,适用于多障碍物环境中的 CDM。为了在多种限制条件下规划可通过的路径,根据 CDM 的特点对 DDPG 算法进行了修改。为了提高规划路径的适应性,新设计了一个专门的奖励函数。在这个函数中,平滑度、到达时间和距离等因素都被考虑在内。模拟和物理实验的结果证明了所提出的 CDM 路径规划方法的性能。
{"title":"DDPG-based path planning for cable-driven manipulators in multi-obstacle environments","authors":"Dong Zhang, Renjie Ju, Zhengcai Cao","doi":"10.1017/s0263574724001048","DOIUrl":"https://doi.org/10.1017/s0263574724001048","url":null,"abstract":"<p>Hyper-redundant cable-driven manipulators (CDMs) are widely used for operations in confined spaces due to their slender bodies and multiple degrees of freedom. Most research focuses on their path following but not path planning. This work investigates a deep deterministic policy gradient (DDPG)-based path-planning algorithm for CDMs in multi-obstacle environments. To plan passable paths under many constraints, a DDPG algorithm is modified according to features of CDMs. To improve adaptability of planned paths, a specialized reward function is newly designed. In this function, such factors as smoothness, arrival time and distance are taken into account. Results of simulations and physical experiments are presented to demonstrate the performances of the proposed methods for planning paths of CDMs.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Configuration design of movable heavy-duty reconfigurable posture adjustment platform with dual motion modes 具有双运动模式的可移动重型可重构姿势调整平台的配置设计
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-09-12 DOI: 10.1017/s026357472400064x
Rui Wang, Xiaoyan Xiong, Jinzhu Zhang, Ruilin Yuan

The existing single-mode posture adjustment equipment for solar wing docking is only suitable for a limited number of satellite dimensions; it could not meet the diverse development trends of satellite models. The working range requirements are different when different-sized satellites dock with the solar wing, and the docking process is divided into two stages in this paper. While the DOFs required for the two stages are different, a movable heavy-load reconfigurable redundant posture adjustment platform (RrPAP) with dual motion modes is proposed in this paper. The RrPAP consists of a wheeled mobile platform and a reconfigurable parallel posture adjustment mechanism (PAM). The micro-motion PAM limb types are synthesized, and the comprehensive load-bearing index is proposed to select the mechanism types for heavy-load conditions. A decentralized four-limb six-degree-of-freedom (6-DOF) parallel micro-motion PAM is designed. In the macro-motion stage, for the PAM to still have a defined motion after being released from ground constraints, a serial coupling sub-chain is designed between adjacent limbs to restrict relative movement between them. A type synthesis method for symmetrically coupled mechanisms based on mechanism decoupling and motion distribution is proposed. Four types of symmetrically coupled mechanisms with multi-loop consisting of serial coupling sub-chains are synthesized by using this method. The feasibility of the proposed method is demonstrated through an example using the constraint synthesis method based on screw theory. This work provides a foundation for subsequent refinement and expansion of type synthesis theories and the selection of new types of mechanisms.

现有的太阳翼对接单模姿态调整设备仅适用于有限的卫星尺寸,无法满足卫星型号多样化的发展趋势。不同尺寸的卫星与太阳翼对接时对工作范围的要求不同,本文将对接过程分为两个阶段。由于两个阶段所需的 DOF 不同,本文提出了一种具有双运动模式的可移动重载可重构冗余姿态调整平台(RrPAP)。RrPAP 由一个轮式移动平台和一个可重新配置的平行姿势调整机构(PAM)组成。合成了微动 PAM 肢体类型,并提出了综合承重指标,以选择重载条件下的机构类型。设计了一种分散式四肢六自由度(6-DOF)平行微动 PAM。在宏观运动阶段,为了使 PAM 在脱离地面约束后仍具有确定的运动,在相邻肢体之间设计了串行耦合子链,以限制它们之间的相对运动。提出了一种基于机构解耦和运动分布的对称耦合机构类型合成方法。利用该方法合成了四种由串行耦合子链组成的多回路对称耦合机构。通过使用基于螺杆理论的约束合成方法的实例,证明了所提方法的可行性。这项工作为后续完善和扩展类型合成理论以及选择新型机构奠定了基础。
{"title":"Configuration design of movable heavy-duty reconfigurable posture adjustment platform with dual motion modes","authors":"Rui Wang, Xiaoyan Xiong, Jinzhu Zhang, Ruilin Yuan","doi":"10.1017/s026357472400064x","DOIUrl":"https://doi.org/10.1017/s026357472400064x","url":null,"abstract":"<p>The existing single-mode posture adjustment equipment for solar wing docking is only suitable for a limited number of satellite dimensions; it could not meet the diverse development trends of satellite models. The working range requirements are different when different-sized satellites dock with the solar wing, and the docking process is divided into two stages in this paper. While the DOFs required for the two stages are different, a movable heavy-load reconfigurable redundant posture adjustment platform (RrPAP) with dual motion modes is proposed in this paper. The RrPAP consists of a wheeled mobile platform and a reconfigurable parallel posture adjustment mechanism (PAM). The micro-motion PAM limb types are synthesized, and the comprehensive load-bearing index is proposed to select the mechanism types for heavy-load conditions. A decentralized four-limb six-degree-of-freedom (6-DOF) parallel micro-motion PAM is designed. In the macro-motion stage, for the PAM to still have a defined motion after being released from ground constraints, a serial coupling sub-chain is designed between adjacent limbs to restrict relative movement between them. A type synthesis method for symmetrically coupled mechanisms based on mechanism decoupling and motion distribution is proposed. Four types of symmetrically coupled mechanisms with multi-loop consisting of serial coupling sub-chains are synthesized by using this method. The feasibility of the proposed method is demonstrated through an example using the constraint synthesis method based on screw theory. This work provides a foundation for subsequent refinement and expansion of type synthesis theories and the selection of new types of mechanisms.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A local collision-free motion planning strategy for hyper-redundant manipulators based on dynamic safety envelopes 基于动态安全包络的超冗余机械手局部无碰撞运动规划策略
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-09-12 DOI: 10.1017/s0263574724000791
Renjie Ju, Dong Zhang, Yan Gai, Zhengcai Cao
Hyper-redundant manipulators (HRMs) exhibit promising adaptability and superior dexterity in cavity detection tasks, owing to their snake-like segmented backbones. Due to the safety concern in contactless operating tasks, reliable motion planning in a confined environment for HRMs is very challenging. However, existing expanding-based obstacle avoidance methods are not feasible in narrow environments, as they will excessively occupy free spaces required for maneuvering. In this work, a local collision-free motion planning strategy based on dynamic safety envelope (DSE) is proposed for HRMs. First, the local motion of HRMs is analyzed in detail, and DSE is proposed for the first time to describe the boundary of the collision-free area. Then, to maximize the efficient utilization of narrow spaces, a reference trajectory for HRM is roughly planned without expanding obstacles. Further, a tip-guided trajectory tracking method based on configuration prediction is proposed by considering the discrete characteristics of rigid links to avoid obstacles. During the tracking process, DSEs are applied to evaluate collision risk and optimize the configuration. Finally, to validate the effectiveness of our proposed method, simulations are conducted, followed by experiments by using a 18-degrees of freedom mobile HRM prototype system.
超冗余机械手(HRMs)因其蛇形分段骨架,在空腔探测任务中表现出良好的适应性和卓越的灵巧性。由于非接触式操作任务中的安全问题,超冗余机械手在密闭环境中进行可靠的运动规划非常具有挑战性。然而,现有的基于扩展的避障方法在狭窄环境中并不可行,因为它们会过度占用机动所需的自由空间。本研究提出了一种基于动态安全包络(DSE)的局部无碰撞运动规划策略。首先,详细分析了 HRM 的局部运动,并首次提出了 DSE 来描述无碰撞区域的边界。然后,为了最大限度地有效利用狭窄空间,在不扩大障碍物的情况下粗略规划了 HRM 的参考轨迹。此外,考虑到刚性链接的离散特性,提出了一种基于配置预测的尖端引导轨迹跟踪方法,以避开障碍物。在跟踪过程中,应用 DSE 评估碰撞风险并优化配置。最后,为了验证我们所提方法的有效性,我们进行了仿真,然后使用 18 自由度移动 HRM 原型系统进行了实验。
{"title":"A local collision-free motion planning strategy for hyper-redundant manipulators based on dynamic safety envelopes","authors":"Renjie Ju, Dong Zhang, Yan Gai, Zhengcai Cao","doi":"10.1017/s0263574724000791","DOIUrl":"https://doi.org/10.1017/s0263574724000791","url":null,"abstract":"Hyper-redundant manipulators (HRMs) exhibit promising adaptability and superior dexterity in cavity detection tasks, owing to their snake-like segmented backbones. Due to the safety concern in contactless operating tasks, reliable motion planning in a confined environment for HRMs is very challenging. However, existing expanding-based obstacle avoidance methods are not feasible in narrow environments, as they will excessively occupy free spaces required for maneuvering. In this work, a local collision-free motion planning strategy based on dynamic safety envelope (DSE) is proposed for HRMs. First, the local motion of HRMs is analyzed in detail, and DSE is proposed for the first time to describe the boundary of the collision-free area. Then, to maximize the efficient utilization of narrow spaces, a reference trajectory for HRM is roughly planned without expanding obstacles. Further, a tip-guided trajectory tracking method based on configuration prediction is proposed by considering the discrete characteristics of rigid links to avoid obstacles. During the tracking process, DSEs are applied to evaluate collision risk and optimize the configuration. Finally, to validate the effectiveness of our proposed method, simulations are conducted, followed by experiments by using a 18-degrees of freedom mobile HRM prototype system.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trace inequalities and kinematic metrics 迹不等式和运动学度量
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-09-12 DOI: 10.1017/s0263574724000778
Yuwei Wu, Gregory S. Chirikjian

Kinematics remains one of the cornerstones of robotics, and over the decade, Robotica has been one of the venues in which groundbreaking work in kinematics has always been welcome. A number of works in the kinematics community have addressed metrics for rigid-body motions in multiple different venues. An essential feature of any distance metric is the triangle inequality. Here, relationships between the triangle inequality for kinematic metrics and so-called trace inequalities are established. In particular, we show that the Golden-Thompson inequality (a particular trace inequality from the field of statistical mechanics) which holds for Hermitian matrices remarkably also holds for restricted classes of real skew-symmetric matrices. We then show that this is related to the triangle inequality for $SO(3)$ and $SO(4)$ metrics.

运动学仍然是机器人学的基石之一,十年来,Robotica 一直是运动学领域开创性工作受到欢迎的场所之一。运动学领域的许多工作都在多个不同的场合探讨了刚体运动的度量问题。任何距离度量的一个基本特征都是三角形不等式。在这里,我们建立了运动学度量的三角形不等式与所谓的迹不等式之间的关系。特别是,我们证明了对赫米特矩阵成立的 Golden-Thompson 不等式(统计力学领域的一种特殊迹不等式)也明显地对受限制的实倾斜对称矩阵类成立。然后,我们证明这与 $SO(3)$ 和 $SO(4)$ 度量的三角形不等式有关。
{"title":"Trace inequalities and kinematic metrics","authors":"Yuwei Wu, Gregory S. Chirikjian","doi":"10.1017/s0263574724000778","DOIUrl":"https://doi.org/10.1017/s0263574724000778","url":null,"abstract":"<p>Kinematics remains one of the cornerstones of robotics, and over the decade, Robotica has been one of the venues in which groundbreaking work in kinematics has always been welcome. A number of works in the kinematics community have addressed metrics for rigid-body motions in multiple different venues. An essential feature of any distance metric is the triangle inequality. Here, relationships between the triangle inequality for kinematic metrics and so-called trace inequalities are established. In particular, we show that the Golden-Thompson inequality (a particular trace inequality from the field of statistical mechanics) which holds for Hermitian matrices remarkably also holds for restricted classes of real skew-symmetric matrices. We then show that this is related to the triangle inequality for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911135946881-0491:S0263574724000778:S0263574724000778_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$SO(3)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911135946881-0491:S0263574724000778:S0263574724000778_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$SO(4)$</span></span></img></span></span> metrics.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive integral terminal sliding mode control of unmanned bicycle via ELM and barrier function 通过 ELM 和障碍函数实现无人驾驶自行车的自适应积分终端滑动模式控制
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-09-12 DOI: 10.1017/s0263574724000997
Long Chen, Zhihui Jin, Ke Shao, Guangyi Wang, Shuping He, Vladimir Stojanovic, Parisa Arabzadeh Bahri, Hai Wang

In this paper, an unmanned bicycle (UB) with a reaction wheel is designed, and a second-order mathematical model with uncertainty is established. In order to achieve excellent balancing performance of the UB system, an adaptive controller is designed, which is composed of nominal feedback control, compensating control using extreme learning machine observer and reaching control via integral terminal sliding mode (ITSM) and barrier function (BF)-based adaptive law. Owing to the features of BF-based ITSM (BFITSM), not only any uncertainty or disturbance upper bound is not needed any longer but also the finite-time convergence of the closed-loop system can be ensured with a predefined error bound. Moreover, the BF-based control gain can be adaptively adjusted according to the update of the lumped uncertainty such that the overestimation is removed. The stability analysis of the closed-loop system is given according to Lyapunov theory. Comparable experimental results on an actual UB are carried out to validate the superior balancing performance of the proposed controller.

本文设计了带反作用力轮的无人驾驶自行车(UB),并建立了带不确定性的二阶数学模型。为了使无人驾驶自行车系统获得优异的平衡性能,本文设计了一种自适应控制器,该控制器由标称反馈控制、使用极端学习机观测器的补偿控制以及通过积分终端滑动模式(ITSM)和基于障壁函数(BF)的自适应律的达到控制组成。由于基于 BF 的 ITSM(BFITSM)的特点,不仅不再需要任何不确定性或扰动上界,而且可以通过预定义的误差约束确保闭环系统的有限时间收敛。此外,基于 BF 的控制增益可以根据整块不确定性的更新进行自适应调整,从而消除高估。根据 Lyapunov 理论对闭环系统进行了稳定性分析。在实际 UB 上进行的可比较实验结果验证了所提出控制器的卓越平衡性能。
{"title":"Adaptive integral terminal sliding mode control of unmanned bicycle via ELM and barrier function","authors":"Long Chen, Zhihui Jin, Ke Shao, Guangyi Wang, Shuping He, Vladimir Stojanovic, Parisa Arabzadeh Bahri, Hai Wang","doi":"10.1017/s0263574724000997","DOIUrl":"https://doi.org/10.1017/s0263574724000997","url":null,"abstract":"<p>In this paper, an unmanned bicycle (UB) with a reaction wheel is designed, and a second-order mathematical model with uncertainty is established. In order to achieve excellent balancing performance of the UB system, an adaptive controller is designed, which is composed of nominal feedback control, compensating control using extreme learning machine observer and reaching control via integral terminal sliding mode (ITSM) and barrier function (BF)-based adaptive law. Owing to the features of BF-based ITSM (BFITSM), not only any uncertainty or disturbance upper bound is not needed any longer but also the finite-time convergence of the closed-loop system can be ensured with a predefined error bound. Moreover, the BF-based control gain can be adaptively adjusted according to the update of the lumped uncertainty such that the overestimation is removed. The stability analysis of the closed-loop system is given according to Lyapunov theory. Comparable experimental results on an actual UB are carried out to validate the superior balancing performance of the proposed controller.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint angle synergy-based humanoid robot motion generation with fascia-inspired nonlinear constraints 利用筋膜启发的非线性约束生成基于关节角度协同作用的仿人机器人动作
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-09-12 DOI: 10.1017/s0263574724000961
Shiqi Yu, Yoshihiro Nakata, Yutaka Nakamura, Hiroshi Ishiguro

When generating simultaneous joint movements of a humanoid with multiple degrees of freedom to replicate human-like movements, the approach of joint synergy can facilitate the generation of whole-body robotic movement with a reduced number of control inputs. However, the trade-off of minimizing control inputs and keeping characteristics of movements makes it difficult to improve movement performance in a simple control manner. In this paper, we introduce an approach by connecting and constraining these joints. It is inspired by the fascia network of the human body, which constrains the whole-body movements of a human. Compared to when only joint synergy is used, the effectiveness of the proposed method is verified by calculating the errors of joint positions of generated movements and human movements. The paper provides a detailed exploration of the proposed method, presenting simulation-experimental results that affirm its effectiveness in generated movements that closely resemble human movements. Furthermore, we provide one possible method on how these concepts can be implemented in actual robotic hardware, offering a pathway to improve movement control in humanoid robots within their mechanical limitations.

在生成具有多个自由度的仿人机器人的同步关节运动以复制类似人类的运动时,关节协同的方法可以在减少控制输入的情况下促进全身机器人运动的生成。然而,在尽量减少控制输入和保持运动特性之间的权衡,很难通过简单的控制方式提高运动性能。在本文中,我们介绍了一种通过连接和约束这些关节的方法。它的灵感来源于人体的筋膜网络,该网络制约着人的全身运动。与只使用关节协同作用相比,通过计算生成运动和人体运动的关节位置误差,验证了所提方法的有效性。本文对所提出的方法进行了详细探讨,并展示了模拟实验结果,这些结果肯定了该方法在生成与人类动作十分相似的动作时的有效性。此外,我们还就如何在实际机器人硬件中实现这些概念提供了一种可行的方法,为在机械限制范围内改进仿人机器人的运动控制提供了一条途径。
{"title":"Joint angle synergy-based humanoid robot motion generation with fascia-inspired nonlinear constraints","authors":"Shiqi Yu, Yoshihiro Nakata, Yutaka Nakamura, Hiroshi Ishiguro","doi":"10.1017/s0263574724000961","DOIUrl":"https://doi.org/10.1017/s0263574724000961","url":null,"abstract":"<p>When generating simultaneous joint movements of a humanoid with multiple degrees of freedom to replicate human-like movements, the approach of joint synergy can facilitate the generation of whole-body robotic movement with a reduced number of control inputs. However, the trade-off of minimizing control inputs and keeping characteristics of movements makes it difficult to improve movement performance in a simple control manner. In this paper, we introduce an approach by connecting and constraining these joints. It is inspired by the fascia network of the human body, which constrains the whole-body movements of a human. Compared to when only joint synergy is used, the effectiveness of the proposed method is verified by calculating the errors of joint positions of generated movements and human movements. The paper provides a detailed exploration of the proposed method, presenting simulation-experimental results that affirm its effectiveness in generated movements that closely resemble human movements. Furthermore, we provide one possible method on how these concepts can be implemented in actual robotic hardware, offering a pathway to improve movement control in humanoid robots within their mechanical limitations.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the biomimetic quadruped jumping robot based on an efficient energy storage structure 基于高效储能结构的仿生四足跳跃机器人研究
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-09-12 DOI: 10.1017/s026357472400095x
Tianyu Zhang, Jieliang Zhao, Chenyang Zhang, Qun Niu, Shaoze Yan
The ability of quadruped robots to overcome obstacles is a critical factor that limits their practical application. Here, a design concept and a control algorithm are presented that aim at enhancing the explosive force of quadruped robots during jumping by utilizing elastic energy storage components. The hind legs of the quadruped robot are designed as energy storage units. Tension springs are utilized as components for storing energy and are installed in a parallel structure on the hind leg. Energy is stored during the compression process of the robot’s torso and released during the jumping phase. The optimal foot force is calculated using a single rigid body model. The mapping relationship between the force applied to the foot and the resulting joint torque is established by developing a dynamic model of the hind legs. Simulation experiments were conducted using the Webots physics engine to compare the impact of varying spring stiffness on joint torque during the jumping process. This study determined the optimal spring stiffness under specific conditions. The hind legs’ torque saving ratio reaches 19%, and the energy-saving ratio reaches 13%, which validates the effectiveness and feasibility of integrating elastic energy storage components.
四足机器人克服障碍的能力是限制其实际应用的关键因素。本文介绍了一种设计理念和控制算法,旨在通过利用弹性储能元件来增强四足机器人在跳跃过程中的爆发力。四足机器人的后腿被设计为能量存储单元。拉伸弹簧被用作储能元件,并以平行结构安装在后腿上。能量在机器人躯干压缩过程中储存,在跳跃阶段释放。最佳脚力是通过单一刚体模型计算得出的。通过开发后腿的动态模型,建立了施加在脚上的力与由此产生的关节扭矩之间的映射关系。使用 Webots 物理引擎进行了模拟实验,以比较跳跃过程中不同弹簧刚度对关节扭矩的影响。这项研究确定了特定条件下的最佳弹簧刚度。后腿的扭矩节省率达到 19%,能量节省率达到 13%,验证了集成弹性储能组件的有效性和可行性。
{"title":"Research on the biomimetic quadruped jumping robot based on an efficient energy storage structure","authors":"Tianyu Zhang, Jieliang Zhao, Chenyang Zhang, Qun Niu, Shaoze Yan","doi":"10.1017/s026357472400095x","DOIUrl":"https://doi.org/10.1017/s026357472400095x","url":null,"abstract":"The ability of quadruped robots to overcome obstacles is a critical factor that limits their practical application. Here, a design concept and a control algorithm are presented that aim at enhancing the explosive force of quadruped robots during jumping by utilizing elastic energy storage components. The hind legs of the quadruped robot are designed as energy storage units. Tension springs are utilized as components for storing energy and are installed in a parallel structure on the hind leg. Energy is stored during the compression process of the robot’s torso and released during the jumping phase. The optimal foot force is calculated using a single rigid body model. The mapping relationship between the force applied to the foot and the resulting joint torque is established by developing a dynamic model of the hind legs. Simulation experiments were conducted using the Webots physics engine to compare the impact of varying spring stiffness on joint torque during the jumping process. This study determined the optimal spring stiffness under specific conditions. The hind legs’ torque saving ratio reaches 19%, and the energy-saving ratio reaches 13%, which validates the effectiveness and feasibility of integrating elastic energy storage components.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Robotica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1