Camilla Malcher Pesset, Carolina O da Fonseca, Milena Antunes, Ana Luiza L Dos Santos, Izabel Melo Teixeira, Eliane de Oliveira Ferreira, Bruno Penna
{"title":"Biofilm formation by <i>Staphylococcus pseudintermedius</i> on titanium implants.","authors":"Camilla Malcher Pesset, Carolina O da Fonseca, Milena Antunes, Ana Luiza L Dos Santos, Izabel Melo Teixeira, Eliane de Oliveira Ferreira, Bruno Penna","doi":"10.1080/08927014.2024.2320721","DOIUrl":null,"url":null,"abstract":"<p><p>Osteomyelitis often involves <i>Staphylococcus</i> spp. as the isolated genus in domestic animal cases. Implant-related infections, frequently associated with biofilm-forming microorganisms like staphylococci species, necessitate careful material selection. This study assessed biofilm formation by <i>Staphylococcus pseudintermedius</i> on titanium nuts used in veterinary orthopaedic surgery. Biofilm quantification employed safranin staining and spectrophotometric measurement, while bacterial counts were determined in colony-forming units (CFU). Scanning Electron Microscopy (SEM) evaluated the biofilm morphology on the surface of titanium nuts. All samples had CFU counts. Absorbance values that evidence biofilm formation were observed in seven of the eight samples tested. SEM images revealed robust bacterial colonization, and significant extracellular polymeric substance production, and the negative control displayed surface irregularities on the nut. Whole genome sequencing revealed accessory Gene Regulator (<i>agr</i>) type III in six samples, <i>agr</i> IV and <i>agr</i> II in two each. Genes encoding <i>hlb</i>, <i>luk-S</i>, <i>luk-F</i>, <i>siet</i>, <i>se_int</i>, and the <i>icaADCB</i> operon were identified in all sequenced samples. Other exfoliative toxins were absent. Biofilm formation by <i>S. pseudintermedius</i> was detected in all samples, indicating the susceptibility of orthopaedic titanium alloys to adhesion and biofilm formation by veterinary species. The biofilm formation capacity raises concerns about potential post-surgical complications and associated costs.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"88-97"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2320721","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteomyelitis often involves Staphylococcus spp. as the isolated genus in domestic animal cases. Implant-related infections, frequently associated with biofilm-forming microorganisms like staphylococci species, necessitate careful material selection. This study assessed biofilm formation by Staphylococcus pseudintermedius on titanium nuts used in veterinary orthopaedic surgery. Biofilm quantification employed safranin staining and spectrophotometric measurement, while bacterial counts were determined in colony-forming units (CFU). Scanning Electron Microscopy (SEM) evaluated the biofilm morphology on the surface of titanium nuts. All samples had CFU counts. Absorbance values that evidence biofilm formation were observed in seven of the eight samples tested. SEM images revealed robust bacterial colonization, and significant extracellular polymeric substance production, and the negative control displayed surface irregularities on the nut. Whole genome sequencing revealed accessory Gene Regulator (agr) type III in six samples, agr IV and agr II in two each. Genes encoding hlb, luk-S, luk-F, siet, se_int, and the icaADCB operon were identified in all sequenced samples. Other exfoliative toxins were absent. Biofilm formation by S. pseudintermedius was detected in all samples, indicating the susceptibility of orthopaedic titanium alloys to adhesion and biofilm formation by veterinary species. The biofilm formation capacity raises concerns about potential post-surgical complications and associated costs.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.