{"title":"The TOPK Inhibitor HI-TOPK-032 Enhances CAR T-cell Therapy of Hepatocellular Carcinoma by Upregulating Memory T Cells.","authors":"Qunfang Zhang, Fang Zheng, Yuchao Chen, Chun-Ling Liang, Huazhen Liu, Feifei Qiu, Yunshan Liu, Hongfeng Huang, Weihui Lu, Zhenhua Dai","doi":"10.1158/2326-6066.CIR-23-0587","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cells are emerging as an effective antitumoral therapy. However, their therapeutic effects on solid tumors are limited because of their short survival time and the immunosuppressive tumor microenvironment. Memory T cells respond more vigorously and persist longer than their naïve/effector counterparts. Therefore, promoting CAR T-cell development into memory T cells could further enhance their antitumoral effects. HI-TOPK-032 is a T-LAK cell-originated protein kinase (TOPK)-specific inhibitor that moderately represses some types of tumors. However, it is unknown whether HI-TOPK-032 works on hepatocellular carcinoma (HCC) and whether it impacts antitumoral immunity. Using both subcutaneous and orthotopic xenograft tumor models of two human HCC cell lines, Huh-7 and HepG2, we found that HI-TOPK-032 significantly improved proliferation/persistence of CD8+ CAR T cells, as evidenced by an increase in CAR T-cell counts or frequency of Ki-67+CD8+ cells and a decrease in PD-1+LAG-3+TIM-3+CD8+ CAR T cells in vivo. Although HI-TOPK-032 did not significantly suppress HCC growth, it enhanced the capacity of CAR T cells to inhibit tumor growth. Moreover, HI-TOPK-032 augmented central memory CD8+ T cell (TCM) frequency while increasing eomesodermin expression in CD8+ CAR T cells in tumor-bearing mice. Moreover, it augmented CD8+ CAR TCM cells in vitro and reduced their expression of immune checkpoint molecules. Finally, HI-TOPK-032 inhibited mTOR activation in CAR T cells in vitro and in tumors, whereas overactivation of mTOR reversed the effects of HI-TOPK-032 on CD8+ TCM cells and tumor growth. Thus, our studies have revealed mechanisms underlying the antitumoral effects of HI-TOPK-032 while advancing CAR T-cell immunotherapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"631-643"},"PeriodicalIF":8.1000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-23-0587","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor (CAR) T cells are emerging as an effective antitumoral therapy. However, their therapeutic effects on solid tumors are limited because of their short survival time and the immunosuppressive tumor microenvironment. Memory T cells respond more vigorously and persist longer than their naïve/effector counterparts. Therefore, promoting CAR T-cell development into memory T cells could further enhance their antitumoral effects. HI-TOPK-032 is a T-LAK cell-originated protein kinase (TOPK)-specific inhibitor that moderately represses some types of tumors. However, it is unknown whether HI-TOPK-032 works on hepatocellular carcinoma (HCC) and whether it impacts antitumoral immunity. Using both subcutaneous and orthotopic xenograft tumor models of two human HCC cell lines, Huh-7 and HepG2, we found that HI-TOPK-032 significantly improved proliferation/persistence of CD8+ CAR T cells, as evidenced by an increase in CAR T-cell counts or frequency of Ki-67+CD8+ cells and a decrease in PD-1+LAG-3+TIM-3+CD8+ CAR T cells in vivo. Although HI-TOPK-032 did not significantly suppress HCC growth, it enhanced the capacity of CAR T cells to inhibit tumor growth. Moreover, HI-TOPK-032 augmented central memory CD8+ T cell (TCM) frequency while increasing eomesodermin expression in CD8+ CAR T cells in tumor-bearing mice. Moreover, it augmented CD8+ CAR TCM cells in vitro and reduced their expression of immune checkpoint molecules. Finally, HI-TOPK-032 inhibited mTOR activation in CAR T cells in vitro and in tumors, whereas overactivation of mTOR reversed the effects of HI-TOPK-032 on CD8+ TCM cells and tumor growth. Thus, our studies have revealed mechanisms underlying the antitumoral effects of HI-TOPK-032 while advancing CAR T-cell immunotherapy.
嵌合抗原受体(CAR)T细胞正在成为一种有效的抗肿瘤疗法。然而,由于肿瘤存活时间短以及肿瘤微环境的免疫抑制作用,它们对实体瘤的治疗效果有限。与天真/效应细胞相比,记忆 T 细胞的反应更强烈,存活时间更长。因此,促进 CAR T 细胞向记忆 T 细胞发展可进一步增强其抗肿瘤效果。HI-TOPK-032是一种TOPK特异性抑制剂,可中度抑制某些类型的肿瘤。然而,HI-TOPK-032 是否对肝细胞癌(HCC)起作用以及是否会影响抗肿瘤免疫尚不清楚。通过使用两种人类 HCC 细胞系 Huh-7 和 HepG2 的皮下和正位异种移植肿瘤模型,我们发现 HI-TOPK-032 能显著改善 CD8+ CAR T 细胞的增殖/存活,表现为体内 CAR T 细胞数量或 Ki-67+CD8+ 细胞频率的增加以及 PD-1+LAG-3+TIM-3+CD8+ CAR T 细胞数量的减少。虽然HI-TOPK-032没有明显抑制HCC的生长,但它增强了CAR T细胞抑制肿瘤生长的能力。此外,HI-TOPK-032还提高了肿瘤小鼠体内CD8+ CAR T细胞的中枢记忆CD8+ T细胞(TCM)频率,同时增加了CD8+ CAR T细胞中eomesodermin的表达。此外,HI-TOPK-032 还能增强体外的 CD8+ CAR TCM 细胞,并减少其免疫检查点分子的表达。最后,HI-TOPK-032 抑制了体外和肿瘤中 CAR T 细胞的 mTOR 激活,而 mTOR 的过度激活则逆转了 HI-TOPK-032 对 CD8+ 中医细胞和肿瘤生长的影响。因此,我们的研究揭示了HI-TOPK-032抗肿瘤作用的机制,同时推动了CAR T细胞免疫疗法的发展。
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.