首页 > 最新文献

Cancer immunology research最新文献

英文 中文
PTP inhibition improves the macrophage anti-tumor immune response and the efficacy of chemo- and radiotherapy.
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-12 DOI: 10.1158/2326-6066.CIR-24-0335
Nestor Prieto-Dominguez, Paran Goel, Oluwagbemiga A Ojo, Katarina Moretto, Alisha Holtzhausen, Angel Humphryes, Xinyue Zhou, Valeriya Kuznetsova, Francesca Dempsey, Kelly Pittman, Rui Lu, Todd J Green, Lewis Z Shi, Robert S Welner, H Shelton Earp, Eric Ubil

Traditional anti-cancer therapies induce tumor cell death and subsequent release of Damage Associated Molecular Patterns (DAMPs) that activate the innate inflammatory response. Paradoxically, after treatment, macrophages often adopt a pro-wound healing, rather than pro-inflammatory, phenotype and contribute to cancer progression. We found that in areas proximal to DAMP release, tumor cells upregulate the expression of Pros1. Tumor-secreted Pros1 binds to the macrophage Mer receptor, consequently limiting responsiveness to DAMPs by preventing Toll Like Receptor (TLR) signal transduction. Pharmacological inhibition of PTP1b signaling downstream of Mer rescued the pro-inflammatory response, even in the presence of Pros1. Combining PTP inhibition with traditional therapeutics, like chemo- or radiotherapy, rescued the innate immune response to DAMPs, increased immune infiltration, and resulted in a 40-90% reduction in tumor growth in multiple treatment refractory preclinical models. Our findings suggest using PTP1b inhibitors may be a tumor agnostic means of improving the efficacy of some of the most widely used anti-cancer therapeutic agents.

{"title":"PTP inhibition improves the macrophage anti-tumor immune response and the efficacy of chemo- and radiotherapy.","authors":"Nestor Prieto-Dominguez, Paran Goel, Oluwagbemiga A Ojo, Katarina Moretto, Alisha Holtzhausen, Angel Humphryes, Xinyue Zhou, Valeriya Kuznetsova, Francesca Dempsey, Kelly Pittman, Rui Lu, Todd J Green, Lewis Z Shi, Robert S Welner, H Shelton Earp, Eric Ubil","doi":"10.1158/2326-6066.CIR-24-0335","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-24-0335","url":null,"abstract":"<p><p>Traditional anti-cancer therapies induce tumor cell death and subsequent release of Damage Associated Molecular Patterns (DAMPs) that activate the innate inflammatory response. Paradoxically, after treatment, macrophages often adopt a pro-wound healing, rather than pro-inflammatory, phenotype and contribute to cancer progression. We found that in areas proximal to DAMP release, tumor cells upregulate the expression of Pros1. Tumor-secreted Pros1 binds to the macrophage Mer receptor, consequently limiting responsiveness to DAMPs by preventing Toll Like Receptor (TLR) signal transduction. Pharmacological inhibition of PTP1b signaling downstream of Mer rescued the pro-inflammatory response, even in the presence of Pros1. Combining PTP inhibition with traditional therapeutics, like chemo- or radiotherapy, rescued the innate immune response to DAMPs, increased immune infiltration, and resulted in a 40-90% reduction in tumor growth in multiple treatment refractory preclinical models. Our findings suggest using PTP1b inhibitors may be a tumor agnostic means of improving the efficacy of some of the most widely used anti-cancer therapeutic agents.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TLR5 signaling causes dendritic-cell dysfunction and orchestrates failure of immune checkpoint therapy against ovarian cancer.
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-11 DOI: 10.1158/2326-6066.CIR-24-0513
Mitchell T McGinty, Audrey M Putelo, Sree H Kolli, Tzu-Yu Feng, Madison R Dietl, Cara N Hatzinger, Simona Bajgai, Mika K Poblete, Francesca N Azar, Anwaruddin Mohammad, Pankaj Kumar, Melanie R Rutkowski

Ovarian cancer accounts for more deaths than any other cancer of the female reproductive system. Patients who have ovarian tumors infiltrated with high frequencies of T cells are associated with a greater survival probability. However, therapies to revitalize tumor-associated T cells, such as PD-L1/PD-1 or CTLA4 blockade, are ineffective for the treatment of ovarian cancer. In this study, we demonstrate that for ovarian cancer, Toll-Like Receptor 5 (TLR5) signaling, for which the only known ligand is bacterial flagellin, governed failure of PD-L1 and CTLA4 blockade. Mechanistically, chronic TLR5 signaling on CD11c+ cells in vivo and in vitro impaired the differentiation of functional IL-12-producing XCR1+CD103+ conventional type 1 dendritic cells (cDC1), biasing CD11c+ precursor cells toward myeloid subsets expressing high levels of PD-L1. This culminated in impaired activation of CD8+ T cells, reducing CD8+ T-cell function and ability to persist within the ovarian tumor microenvironment. Expansion of cDC1s in situ using FLT3L in combination with PD-L1 blockade achieved significant survival benefit in TLR5 knockout mice bearing ovarian tumors, whereas no benefit was observed in the presence of TLR5 signaling. Thus, we have identified a host-intrinsic mechanism leading to the failure of PD-L1 blockade for ovarian cancer, demonstrating that chronic TLR5 signaling on CD11c+ cells is a barrier limiting the efficacy of checkpoint therapy.

{"title":"TLR5 signaling causes dendritic-cell dysfunction and orchestrates failure of immune checkpoint therapy against ovarian cancer.","authors":"Mitchell T McGinty, Audrey M Putelo, Sree H Kolli, Tzu-Yu Feng, Madison R Dietl, Cara N Hatzinger, Simona Bajgai, Mika K Poblete, Francesca N Azar, Anwaruddin Mohammad, Pankaj Kumar, Melanie R Rutkowski","doi":"10.1158/2326-6066.CIR-24-0513","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-24-0513","url":null,"abstract":"<p><p>Ovarian cancer accounts for more deaths than any other cancer of the female reproductive system. Patients who have ovarian tumors infiltrated with high frequencies of T cells are associated with a greater survival probability. However, therapies to revitalize tumor-associated T cells, such as PD-L1/PD-1 or CTLA4 blockade, are ineffective for the treatment of ovarian cancer. In this study, we demonstrate that for ovarian cancer, Toll-Like Receptor 5 (TLR5) signaling, for which the only known ligand is bacterial flagellin, governed failure of PD-L1 and CTLA4 blockade. Mechanistically, chronic TLR5 signaling on CD11c+ cells in vivo and in vitro impaired the differentiation of functional IL-12-producing XCR1+CD103+ conventional type 1 dendritic cells (cDC1), biasing CD11c+ precursor cells toward myeloid subsets expressing high levels of PD-L1. This culminated in impaired activation of CD8+ T cells, reducing CD8+ T-cell function and ability to persist within the ovarian tumor microenvironment. Expansion of cDC1s in situ using FLT3L in combination with PD-L1 blockade achieved significant survival benefit in TLR5 knockout mice bearing ovarian tumors, whereas no benefit was observed in the presence of TLR5 signaling. Thus, we have identified a host-intrinsic mechanism leading to the failure of PD-L1 blockade for ovarian cancer, demonstrating that chronic TLR5 signaling on CD11c+ cells is a barrier limiting the efficacy of checkpoint therapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective STING Activation in Intratumoral Myeloid Cells via CCR2-Directed Antibody Drug Conjugate TAK-500.
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-07 DOI: 10.1158/2326-6066.CIR-24-0103
Vicky A Appleman, Atsushi Matsuda, Michelle L Ganno, Dong Mei Zhang, Emily Rosentrater, Angel E Maldonado Lopez, Angelo Porciuncula, Tiquella Hatten, Camilla L Christensen, Samantha A Merrigan, Hong Myung Lee, Min Young Lee, Charlotte I Wang, Linlin Dong, Jian Huang, Natasha Iartchouk, Jianing Wang, He Xu, Tomoki Yoneyama, Konstantin I Piatkov, Satyajeet Haridas, Carole E Harbison, Richard C Gregory, Alexander Parent, Neil Lineberry, Chris Arendt, Kurt A Schalper, Adnan O Abu-Yousif

The tumor microenvironment (TME) in solid tumors contains myeloid cells that modulate local immune activity. STING signaling activation in these myeloid cells enhances local type I interferon (IFN) production, inducing an innate immune response that mobilizes adaptive immunity and reprograms immunosuppressive myeloid populations to drive antitumor immunity. Here, we generated TAK-500, an immune cell directed antibody drug conjugate (iADC), to deliver a STING agonist to CCR2+ human cells and drive enhanced antitumor activity relative to non-targeted STING agonists. Preclinically, TAK-500 triggered dose-dependent innate immune activation in vitro. In addition, a murine TAK-500 iADC surrogate enhanced innate and adaptive immune responses both in vitro and in murine tumor models. Spatially resolved analysis of CCR2 and immune cell markers in the TME of >1,000 primary human tumors showed the CCR2 protein was predominantly expressed in intratumoral myeloid cells. Collectively, these data highlight the clinical potential of delivering a STING agonist to CCR2+ cells.

{"title":"Selective STING Activation in Intratumoral Myeloid Cells via CCR2-Directed Antibody Drug Conjugate TAK-500.","authors":"Vicky A Appleman, Atsushi Matsuda, Michelle L Ganno, Dong Mei Zhang, Emily Rosentrater, Angel E Maldonado Lopez, Angelo Porciuncula, Tiquella Hatten, Camilla L Christensen, Samantha A Merrigan, Hong Myung Lee, Min Young Lee, Charlotte I Wang, Linlin Dong, Jian Huang, Natasha Iartchouk, Jianing Wang, He Xu, Tomoki Yoneyama, Konstantin I Piatkov, Satyajeet Haridas, Carole E Harbison, Richard C Gregory, Alexander Parent, Neil Lineberry, Chris Arendt, Kurt A Schalper, Adnan O Abu-Yousif","doi":"10.1158/2326-6066.CIR-24-0103","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-24-0103","url":null,"abstract":"<p><p>The tumor microenvironment (TME) in solid tumors contains myeloid cells that modulate local immune activity. STING signaling activation in these myeloid cells enhances local type I interferon (IFN) production, inducing an innate immune response that mobilizes adaptive immunity and reprograms immunosuppressive myeloid populations to drive antitumor immunity. Here, we generated TAK-500, an immune cell directed antibody drug conjugate (iADC), to deliver a STING agonist to CCR2+ human cells and drive enhanced antitumor activity relative to non-targeted STING agonists. Preclinically, TAK-500 triggered dose-dependent innate immune activation in vitro. In addition, a murine TAK-500 iADC surrogate enhanced innate and adaptive immune responses both in vitro and in murine tumor models. Spatially resolved analysis of CCR2 and immune cell markers in the TME of >1,000 primary human tumors showed the CCR2 protein was predominantly expressed in intratumoral myeloid cells. Collectively, these data highlight the clinical potential of delivering a STING agonist to CCR2+ cells.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The HSP90 Inhibitor Pimitespib Targets Regulatory T Cells in the Tumor Microenvironment. HSP90抑制剂Pimitespib靶向肿瘤微环境中的调节性T细胞
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-03 DOI: 10.1158/2326-6066.CIR-24-0713
Ayaka Tsuge, Sho Watanabe, Akihito Kawazoe, Yosuke Togashi, Kota Itahashi, Mari Masuda, Atsuo Sai, Shogo Takei, Hiromi Muraoka, Shuichi Ohkubo, Daisuke Sugiyama, Yue Yan, Shota Fukuoka, Toshihiko Doi, Kohei Shitara, Shohei Koyama, Hiroyoshi Nishikawa

Regulatory T (Treg) cells play key roles in cancer immunity by suppressing a range of antitumor immune responses and contributing to resistance to PD-1 blockade therapy. Given their critical roles in self-tolerance, local control of immunosuppression by Treg cells, such as in the tumor microenvironment, has been intensively studied. Inhibition of HSP90, a chaperone with vital roles in regulating proteostasis in cancer cells, impedes cancer progression by interrupting oncogenic signaling pathways and potentially modulating antitumor immunity, but we have very little mechanistic insight into these immune modulatory effects. In this study, we show that the number of Treg cells is selectively reduced by the HSP90 inhibitor pimitespib in animal models and patients with gastric cancer in a clinical trial (EPOC1704). Pimitespib reduced the highly immunosuppressive human FOXP3high effector Treg cells by inhibiting their proliferation and decreasing their expression of effector molecules, which improved the priming and activation of antigen-specific CD8+ T cells. Mechanistic studies revealed that pimitespib selectively degraded STAT5, a key transducer of the IL2 signaling pathway, which is essential for Treg cell development and maintenance, and consequently compromised FOXP3 expression, leading to selective impairment of immunosuppression in the tumor microenvironment by Treg cells. Thus, pimitespib treatment combined with PD-1 blockade exhibited a far stronger antitumor effect than either treatment alone in animal models. Through these data, we propose that HSP90 inhibition is a promising therapeutic option for Treg cell-targeted cancer immunotherapy.

调节性 T(Treg)细胞在癌症免疫中发挥着关键作用,它们抑制一系列抗肿瘤免疫反应,并导致对程序性死亡(PD)-1 阻断疗法的抵抗。鉴于Treg细胞在自我耐受中的关键作用,人们对其在肿瘤微环境(TME)中对免疫抑制的局部控制进行了深入研究。热休克蛋白 90(HSP90)是一种在调节癌细胞蛋白稳态中起重要作用的伴侣蛋白,抑制它可通过中断致癌信号通路和潜在地调节抗肿瘤免疫来阻碍癌症进展,但我们对这些免疫调节作用的机理知之甚少。在这里,我们在一项临床试验(EPOC1704)中发现,HSP90 抑制剂 pimitespib 可选择性地减少动物模型和胃癌患者的 Treg 细胞数量。Pimitespib 通过抑制人 FOXP3 高效应 Treg 细胞的增殖和降低其效应分子的表达,减少了高度免疫抑制的人 FOXP3 高效应 Treg 细胞,从而改善了抗原特异性 CD8+ T 细胞的启动和活化。机理研究发现,pimitespib 可选择性地降解 STAT5,STAT5 是 IL-2 信号通路的关键传导因子,对 Treg 细胞的发育和维持至关重要,因此会影响 FOXP3 的表达,导致 Treg 细胞选择性地损害 TME 中的免疫抑制。因此,在动物模型中,pimitespib治疗联合PD-1阻断的抗肿瘤效果远远强于单独使用其中一种治疗方法。通过这些数据,我们认为 HSP90 抑制剂是 Treg 细胞靶向癌症免疫疗法的一种很有前景的治疗选择。
{"title":"The HSP90 Inhibitor Pimitespib Targets Regulatory T Cells in the Tumor Microenvironment.","authors":"Ayaka Tsuge, Sho Watanabe, Akihito Kawazoe, Yosuke Togashi, Kota Itahashi, Mari Masuda, Atsuo Sai, Shogo Takei, Hiromi Muraoka, Shuichi Ohkubo, Daisuke Sugiyama, Yue Yan, Shota Fukuoka, Toshihiko Doi, Kohei Shitara, Shohei Koyama, Hiroyoshi Nishikawa","doi":"10.1158/2326-6066.CIR-24-0713","DOIUrl":"10.1158/2326-6066.CIR-24-0713","url":null,"abstract":"<p><p>Regulatory T (Treg) cells play key roles in cancer immunity by suppressing a range of antitumor immune responses and contributing to resistance to PD-1 blockade therapy. Given their critical roles in self-tolerance, local control of immunosuppression by Treg cells, such as in the tumor microenvironment, has been intensively studied. Inhibition of HSP90, a chaperone with vital roles in regulating proteostasis in cancer cells, impedes cancer progression by interrupting oncogenic signaling pathways and potentially modulating antitumor immunity, but we have very little mechanistic insight into these immune modulatory effects. In this study, we show that the number of Treg cells is selectively reduced by the HSP90 inhibitor pimitespib in animal models and patients with gastric cancer in a clinical trial (EPOC1704). Pimitespib reduced the highly immunosuppressive human FOXP3high effector Treg cells by inhibiting their proliferation and decreasing their expression of effector molecules, which improved the priming and activation of antigen-specific CD8+ T cells. Mechanistic studies revealed that pimitespib selectively degraded STAT5, a key transducer of the IL2 signaling pathway, which is essential for Treg cell development and maintenance, and consequently compromised FOXP3 expression, leading to selective impairment of immunosuppression in the tumor microenvironment by Treg cells. Thus, pimitespib treatment combined with PD-1 blockade exhibited a far stronger antitumor effect than either treatment alone in animal models. Through these data, we propose that HSP90 inhibition is a promising therapeutic option for Treg cell-targeted cancer immunotherapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"273-285"},"PeriodicalIF":8.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and Phenotypic Characterization of Neoantigen-Specific Cytotoxic CD4+ T Cells in Endometrial Cancer. 子宫内膜癌中新抗原特异性细胞毒性CD4+ T细胞的鉴定和表型特征。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-03 DOI: 10.1158/2326-6066.CIR-24-0514
Minami Fusagawa, Serina Tokita, Kenji Murata, Tasuku Mariya, Mina Umemoto, Shintaro Sugita, Kazuhiko Matsuo, Yoshihiko Hirohashi, Tsuyoshi Saito, Takayuki Kanaseki, Toshihiko Torigoe

Tumor-reactive CD4+ T cells often accumulate in the tumor microenvironment (TME) in human cancer, but their functions and roles in antitumor responses remain elusive. Here, we investigated the immunopeptidome of HLA class II-positive (HLA-II+) endometrial cancer with an inflamed TME using a proteogenomic approach. We identified HLA-II neoantigens, one of which induced polyclonal CD4+ tumor-infiltrating lymphocyte responses. We then experimentally demonstrated that neoantigen-specific CD4+ tumor-infiltrating lymphocytes lyse target cells in an HLA-II-dependent manner. Single-cell transcriptomic analysis of the TME coupled with T-cell receptor sequencing revealed the presence of CD4+ T-cell clusters characterized by CXCL13 expression. The CXCL13+ clusters contained two subclusters with distinct cytotoxic gene expression patterns. The identified neoantigen-specific CD4+ T cells were found exclusively in one of the CXCL13+ subclusters characterized by granzyme B and CCL5 expression. These results demonstrate the involvement of tumor-reactive CD4+ T cells with cytotoxic function in immune surveillance of endometrial cancer and reveal their transcriptomic signature.

在人类癌症中,肿瘤反应性CD4+ T细胞经常在肿瘤微环境(TME)中积累,但它们在抗肿瘤反应中的功能和作用尚不清楚。在这里,我们使用蛋白质基因组学方法研究了HLA ii型阳性(HLA- ii +)子宫内膜癌伴炎症性TME的免疫肽球。我们鉴定出HLA-II新抗原,其中一种可诱导多克隆CD4+肿瘤浸润淋巴细胞(TIL)反应。然后,我们通过实验证明了新抗原特异性CD4+ TILs以hla - ii依赖的方式裂解靶细胞。TME与t细胞受体(TCR)测序的单细胞转录组学分析显示存在以CXCL13表达为特征的CD4+ t细胞簇。CXCL13+簇包含两个具有不同细胞毒性基因表达模式的亚簇。所鉴定的新抗原特异性CD4+ T细胞仅存在于以颗粒酶B和CCL5表达为特征的CXCL13+亚群之一中。这些结果表明,具有细胞毒性功能的肿瘤反应性CD4+ T细胞参与了子宫内膜癌的免疫监视,并揭示了它们的转录组特征。
{"title":"Identification and Phenotypic Characterization of Neoantigen-Specific Cytotoxic CD4+ T Cells in Endometrial Cancer.","authors":"Minami Fusagawa, Serina Tokita, Kenji Murata, Tasuku Mariya, Mina Umemoto, Shintaro Sugita, Kazuhiko Matsuo, Yoshihiko Hirohashi, Tsuyoshi Saito, Takayuki Kanaseki, Toshihiko Torigoe","doi":"10.1158/2326-6066.CIR-24-0514","DOIUrl":"10.1158/2326-6066.CIR-24-0514","url":null,"abstract":"<p><p>Tumor-reactive CD4+ T cells often accumulate in the tumor microenvironment (TME) in human cancer, but their functions and roles in antitumor responses remain elusive. Here, we investigated the immunopeptidome of HLA class II-positive (HLA-II+) endometrial cancer with an inflamed TME using a proteogenomic approach. We identified HLA-II neoantigens, one of which induced polyclonal CD4+ tumor-infiltrating lymphocyte responses. We then experimentally demonstrated that neoantigen-specific CD4+ tumor-infiltrating lymphocytes lyse target cells in an HLA-II-dependent manner. Single-cell transcriptomic analysis of the TME coupled with T-cell receptor sequencing revealed the presence of CD4+ T-cell clusters characterized by CXCL13 expression. The CXCL13+ clusters contained two subclusters with distinct cytotoxic gene expression patterns. The identified neoantigen-specific CD4+ T cells were found exclusively in one of the CXCL13+ subclusters characterized by granzyme B and CCL5 expression. These results demonstrate the involvement of tumor-reactive CD4+ T cells with cytotoxic function in immune surveillance of endometrial cancer and reveal their transcriptomic signature.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"171-184"},"PeriodicalIF":8.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TBK1 Targeting Is Identified as a Therapeutic Strategy to Enhance CAR T-Cell Efficacy Using Patient-Derived Organotypic Tumor Spheroids. TBK1靶向被认为是一种利用患者来源的器官型肿瘤球体增强CAR - t细胞疗效的治疗策略。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-03 DOI: 10.1158/2326-6066.CIR-23-1011
Yi Sun, Luke Maggs, Apekshya Panda, Samuel J Wright, Angelina M Cicerchia, Anne Jenney, Matthew D Perricone, Caitlin E Mills, Giulia Cattaneo, Marco Ventin, Feng Chen, Martin Q Rasmussen, Alex Miranda, Or-Yam Revach, Jacy Fang, Amina Fu, Peter J Bowling, Tatyana Sharova, Aleigha Lawless, Peter K Sorger, Nabeel Bardeesy, Xinhui Wang, Keith T Flaherty, Genevieve M Boland, Arnav Mehta, Moshe Sade-Feldman, Cristina R Ferrone, Russell W Jenkins

Novel therapeutic strategies are needed to improve the efficacy of chimeric antigen receptor (CAR) T cells as a treatment of solid tumors. Multiple tumor microenvironmental factors are thought to contribute to resistance to CAR T-cell therapy in solid tumors, and appropriate model systems to identify and examine these factors using clinically relevant biospecimens are limited. In this study, we examined the activity of B7-H3-directed CAR T cells (B7-H3.CAR-T) using 3D microfluidic cultures of patient-derived organotypic tumor spheroids (PDOTS) and then confirmed the activity of B7-H3.CAR T cells in PDOTS. Although B7-H3 expression in PDOTS was associated with B7-H3.CAR-T sensitivity, mechanistic studies revealed dynamic upregulation of co-inhibitory receptors on CAR T-cells following target cell encounter that led to CAR T-cell dysfunction and limited efficacy against B7-H3-expressing tumors. PD-1 blockade restored CAR T-cell activity in monotypic and organotypic tumor spheroids with improved tumor control and upregulation of effector cytokines. Given the emerging role of TANK-binding kinase 1 (TBK1) as an immune evasion gene, we examined the effect of TBK1 inhibition on CAR T-cell efficacy. Similar to PD-1 blockade, TBK1 inhibition restored CAR T-cell activity in monotypic and organotypic tumor spheroids, prevented CAR T-cell dysfunction, and enhanced CAR T-cell proliferation. Inhibition or deletion of TBK1 also enhanced the sensitivity of cancer cells to immune-mediated killing. Taken together, our results demonstrate the feasibility and utility of ex vivo profiling of CAR T cells using PDOTS and suggest that targeting TBK1 could be used to enhance CAR T-cell efficacy by overcoming tumor-intrinsic and -extrinsic resistance mechanisms.

需要新的治疗策略来提高嵌合抗原受体(CAR) T细胞治疗实体瘤的疗效。多种肿瘤微环境因素被认为有助于实体肿瘤对CAR - t细胞治疗的耐药性,并且使用临床相关生物标本识别和检查这些因素的适当模型系统是有限的。在本研究中,我们利用患者源性器官型肿瘤球体(PDOTS)的三维微流体培养检测了B7-H3定向CAR-T细胞(B7-H3.CAR-T)的活性,并证实了B7-H3的活性。PDOTS中的CAR - T细胞。虽然B7-H3在PDOTS中的表达与B7-H3相关。CAR- t的敏感性和机制研究表明,CAR- t细胞的共抑制受体在靶细胞遭遇后动态上调,导致CAR- t细胞功能障碍,对表达b7 - h3的肿瘤的疗效有限。PD-1阻断恢复了单型和器官型肿瘤球体中CAR - t细胞的活性,改善了肿瘤控制和效应细胞因子的上调。鉴于坦克结合激酶1 (TANK-binding kinase 1, TBK1)作为免疫逃避基因的新作用,我们研究了TBK1抑制对CAR - t细胞疗效的影响。与PD-1阻断类似,TBK1抑制恢复了单型和器官型肿瘤球体中CAR - t细胞的活性,阻止了CAR - t细胞功能障碍,增强了CAR - t细胞的增殖。TBK1的抑制或缺失也增强了癌细胞对免疫介导的杀伤的敏感性。综上所述,我们的研究结果证明了使用PDOTS对CAR - T细胞进行体外分析的可行性和实用性,并表明靶向TBK1可以通过克服肿瘤内在和外在抵抗机制来增强CAR - T细胞的疗效。
{"title":"TBK1 Targeting Is Identified as a Therapeutic Strategy to Enhance CAR T-Cell Efficacy Using Patient-Derived Organotypic Tumor Spheroids.","authors":"Yi Sun, Luke Maggs, Apekshya Panda, Samuel J Wright, Angelina M Cicerchia, Anne Jenney, Matthew D Perricone, Caitlin E Mills, Giulia Cattaneo, Marco Ventin, Feng Chen, Martin Q Rasmussen, Alex Miranda, Or-Yam Revach, Jacy Fang, Amina Fu, Peter J Bowling, Tatyana Sharova, Aleigha Lawless, Peter K Sorger, Nabeel Bardeesy, Xinhui Wang, Keith T Flaherty, Genevieve M Boland, Arnav Mehta, Moshe Sade-Feldman, Cristina R Ferrone, Russell W Jenkins","doi":"10.1158/2326-6066.CIR-23-1011","DOIUrl":"10.1158/2326-6066.CIR-23-1011","url":null,"abstract":"<p><p>Novel therapeutic strategies are needed to improve the efficacy of chimeric antigen receptor (CAR) T cells as a treatment of solid tumors. Multiple tumor microenvironmental factors are thought to contribute to resistance to CAR T-cell therapy in solid tumors, and appropriate model systems to identify and examine these factors using clinically relevant biospecimens are limited. In this study, we examined the activity of B7-H3-directed CAR T cells (B7-H3.CAR-T) using 3D microfluidic cultures of patient-derived organotypic tumor spheroids (PDOTS) and then confirmed the activity of B7-H3.CAR T cells in PDOTS. Although B7-H3 expression in PDOTS was associated with B7-H3.CAR-T sensitivity, mechanistic studies revealed dynamic upregulation of co-inhibitory receptors on CAR T-cells following target cell encounter that led to CAR T-cell dysfunction and limited efficacy against B7-H3-expressing tumors. PD-1 blockade restored CAR T-cell activity in monotypic and organotypic tumor spheroids with improved tumor control and upregulation of effector cytokines. Given the emerging role of TANK-binding kinase 1 (TBK1) as an immune evasion gene, we examined the effect of TBK1 inhibition on CAR T-cell efficacy. Similar to PD-1 blockade, TBK1 inhibition restored CAR T-cell activity in monotypic and organotypic tumor spheroids, prevented CAR T-cell dysfunction, and enhanced CAR T-cell proliferation. Inhibition or deletion of TBK1 also enhanced the sensitivity of cancer cells to immune-mediated killing. Taken together, our results demonstrate the feasibility and utility of ex vivo profiling of CAR T cells using PDOTS and suggest that targeting TBK1 could be used to enhance CAR T-cell efficacy by overcoming tumor-intrinsic and -extrinsic resistance mechanisms.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"210-228"},"PeriodicalIF":8.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperthermic Intrathoracic Chemotherapy Modulates the Immune Microenvironment of Pleural Mesothelioma and Improves the Impact of Dual Immune Checkpoint Inhibition. 胸腔内热化疗可调节胸膜间皮瘤的免疫微环境,并改善双重免疫检查点抑制的效果。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-03 DOI: 10.1158/2326-6066.CIR-24-0245
Yameng Hao, Aspasia Gkasti, Amy J Managh, Julien Dagher, Alexandros Sifis, Luca Tiron, Louis-Emmanuel Chriqui, Damien N Marie, Olga De Souza Silva, Michel Christodoulou, Solange Peters, Johanna A Joyce, Thorsten Krueger, Michel Gonzalez, Etienne Abdelnour-Berchtold, Christine Sempoux, Daniel Clerc, Hugo Teixeira-Farinha, Martin Hübner, Etienne Meylan, Paul J Dyson, Sabrina Cavin, Jean Y Perentes

Pleural mesothelioma is a fatal disease with limited treatment options. Recently, pleural mesothelioma management has improved with the development of immune checkpoint inhibitors (ICI). In first-line therapy, dual PD-1 and CTLA-4 blockade enhances tumor control and patient survival compared with chemotherapy. Unfortunately, only a fraction of patients is responsive to immunotherapy, and approaches to reshape the tumor immune microenvironment and make ICIs more effective are urgently required. In this study, we evaluated the effect of hyperthermic intrathoracic chemotherapy (HITOC), a treatment that combines fever-range hyperthermia with local intrapleural cisplatin chemotherapy, on the tumor immune microenvironment and response to ICIs. To do this, we developed a murine pleural mesothelioma model of HITOC. We found that HITOC significantly improved tumor control and animal survival through a mechanism involving the development of a cytotoxic immune response. Additionally, HITOC enhanced immune checkpoint expression by T lymphocytes and synergized with dual PD-1 and CTLA-4 inhibition, leading to further improvement in animal survival. Finally, the analysis of peritoneal mesothelioma patient samples treated by pressurized intraperitoneal aerosol chemotherapy revealed a similar immunomodulation. In conclusion, HITOC remodels the tumor immune microenvironment of pleural mesothelioma by promoting T-cell infiltration into the tumor and could be considered in combination with ICIs in the context of a clinical trial.

胸膜间皮瘤(PM)是一种致命疾病,治疗方案有限。最近,随着免疫检查点抑制剂(ICIs)的开发,胸膜间皮瘤的治疗得到了改善。在一线治疗中,与化疗相比,PD-1和CTLA-4双重阻断可提高肿瘤控制率和患者生存率。不幸的是,只有一小部分患者对免疫疗法有反应,因此迫切需要重塑肿瘤免疫微环境并使 ICIs 更有效的方法。在这里,我们评估了热疗胸腔内化疗(HITOC)对肿瘤免疫微环境和对 ICIs 反应的影响,热疗胸腔内化疗是一种将发热范围热疗与局部胸腔内顺铂化疗相结合的治疗方法。为此,我们开发了一种 HITOC 小鼠 PM 模型。我们发现,通过细胞毒性免疫反应的发展机制,HITOC 明显改善了肿瘤控制和动物存活率。此外,HITOC还能增强T淋巴细胞的免疫检查点表达,并与PD-1和CTLA-4双重抑制协同作用,从而进一步提高动物的存活率。最后,对采用加压腹腔内气溶胶化疗(PIPAC)治疗的腹膜间皮瘤患者样本进行的分析也显示了类似的免疫调节作用。总之,HITOC 可通过促进 T 细胞浸润肿瘤来重塑 PM 的肿瘤免疫微环境,在临床试验中可考虑与 ICIs 结合使用。
{"title":"Hyperthermic Intrathoracic Chemotherapy Modulates the Immune Microenvironment of Pleural Mesothelioma and Improves the Impact of Dual Immune Checkpoint Inhibition.","authors":"Yameng Hao, Aspasia Gkasti, Amy J Managh, Julien Dagher, Alexandros Sifis, Luca Tiron, Louis-Emmanuel Chriqui, Damien N Marie, Olga De Souza Silva, Michel Christodoulou, Solange Peters, Johanna A Joyce, Thorsten Krueger, Michel Gonzalez, Etienne Abdelnour-Berchtold, Christine Sempoux, Daniel Clerc, Hugo Teixeira-Farinha, Martin Hübner, Etienne Meylan, Paul J Dyson, Sabrina Cavin, Jean Y Perentes","doi":"10.1158/2326-6066.CIR-24-0245","DOIUrl":"10.1158/2326-6066.CIR-24-0245","url":null,"abstract":"<p><p>Pleural mesothelioma is a fatal disease with limited treatment options. Recently, pleural mesothelioma management has improved with the development of immune checkpoint inhibitors (ICI). In first-line therapy, dual PD-1 and CTLA-4 blockade enhances tumor control and patient survival compared with chemotherapy. Unfortunately, only a fraction of patients is responsive to immunotherapy, and approaches to reshape the tumor immune microenvironment and make ICIs more effective are urgently required. In this study, we evaluated the effect of hyperthermic intrathoracic chemotherapy (HITOC), a treatment that combines fever-range hyperthermia with local intrapleural cisplatin chemotherapy, on the tumor immune microenvironment and response to ICIs. To do this, we developed a murine pleural mesothelioma model of HITOC. We found that HITOC significantly improved tumor control and animal survival through a mechanism involving the development of a cytotoxic immune response. Additionally, HITOC enhanced immune checkpoint expression by T lymphocytes and synergized with dual PD-1 and CTLA-4 inhibition, leading to further improvement in animal survival. Finally, the analysis of peritoneal mesothelioma patient samples treated by pressurized intraperitoneal aerosol chemotherapy revealed a similar immunomodulation. In conclusion, HITOC remodels the tumor immune microenvironment of pleural mesothelioma by promoting T-cell infiltration into the tumor and could be considered in combination with ICIs in the context of a clinical trial.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"185-199"},"PeriodicalIF":8.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting of Tumoral NAC1 Mitigates Myeloid-Derived Suppressor Cell-Mediated Immunosuppression and Potentiates Anti-PD-1 Therapy in Ovarian Cancer. 靶向肿瘤 NAC1 可减轻髓源性抑制细胞介导的免疫抑制,并增强卵巢癌的抗 PD-1 治疗效果。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-03 DOI: 10.1158/2326-6066.CIR-24-0084
Shunli Dong, Cong Ye, Bin Li, Fanglin Lv, Lu Zhang, Shumin Yang, Fang Wang, Mingxian Zhu, Mingxuan Zhou, Fanfan Guo, Zhenyun Li, Lei Peng, Cheng Ji, Xialiang Lu, Yan Cheng, Xingcong Ren, Youguo Chen, Jinhua Zhou, Jinming Yang, Yi Zhang

Epithelial ovarian cancer is the most common type of ovarian cancer with a low rate of response to immunotherapy such as immune checkpoint blockade therapy. In this study, we report that nucleus accumbens-associated protein 1 (NAC1), a putative driver of epithelial ovarian cancer, has a critical role in immune evasion. We showed in murine ovarian cancer models that depleting or inhibiting tumoral NAC1 reduced the recruitment and immunosuppressive function of myeloid-derived suppressor cells (MDSC) in the tumor microenvironment, led to significant increases of cytotoxic tumor-infiltrating CD8+ T cells, and promoted antitumor immunity and suppressed tumor progression. We further showed that tumoral NAC1 directly enhanced the transcription of CXCL16 by binding to CXCR6, thereby promoting MDSC recruitment to the tumor. Moreover, lipid C20:1T produced by NAC1-expressing tumor cells fueled oxidative metabolism of MDSCs and promoted their immune-suppressive function. We also showed that NIC3, a small-molecule inhibitor of NAC1, was able to sensitize mice bearing NAC1-expressing ovarian tumors to anti-PD-1 therapy. Our study reveals a critical role for NAC1 in controlling tumor infiltration of MDSCs and in modulating the efficacy of immune checkpoint blockade therapy. Thus, targeting of NAC1 may be exploited to sensitize ovarian cancer to immunotherapy.

上皮性卵巢癌(EOC)是最常见的卵巢癌类型,对免疫检查点阻断疗法(ICB)等免疫疗法的反应率很低。在这里,我们报告说,EOC 的推定驱动因子--核团相关蛋白 1(NAC1)在免疫逃避中起着至关重要的作用。我们在小鼠卵巢癌模型中发现,消耗或抑制肿瘤NAC1可减少肿瘤微环境(TME)中髓源抑制细胞(MDSCs)的招募和免疫抑制功能,导致细胞毒性肿瘤浸润CD8+ T细胞显著增加,并促进抗肿瘤免疫和抑制肿瘤进展。我们进一步发现,肿瘤NAC1通过与CXCR6结合,直接增强了CXCL16的转录,从而促进了MDSC向肿瘤的招募。此外,表达 NAC1 的肿瘤细胞产生的脂质 C20:1T 促进了 MDSCs 的氧化代谢,增强了其免疫抑制功能。我们还发现,NAC1 的小分子抑制剂 NIC3 能够使小鼠体内表达 NAC1 的卵巢肿瘤对抗 PD-1 治疗敏感。我们的研究揭示了NAC1在控制肿瘤MDSCs浸润和调节ICB疗法疗效方面的关键作用。因此,可以利用 NAC1 靶点使卵巢癌对免疫疗法敏感。
{"title":"Targeting of Tumoral NAC1 Mitigates Myeloid-Derived Suppressor Cell-Mediated Immunosuppression and Potentiates Anti-PD-1 Therapy in Ovarian Cancer.","authors":"Shunli Dong, Cong Ye, Bin Li, Fanglin Lv, Lu Zhang, Shumin Yang, Fang Wang, Mingxian Zhu, Mingxuan Zhou, Fanfan Guo, Zhenyun Li, Lei Peng, Cheng Ji, Xialiang Lu, Yan Cheng, Xingcong Ren, Youguo Chen, Jinhua Zhou, Jinming Yang, Yi Zhang","doi":"10.1158/2326-6066.CIR-24-0084","DOIUrl":"10.1158/2326-6066.CIR-24-0084","url":null,"abstract":"<p><p>Epithelial ovarian cancer is the most common type of ovarian cancer with a low rate of response to immunotherapy such as immune checkpoint blockade therapy. In this study, we report that nucleus accumbens-associated protein 1 (NAC1), a putative driver of epithelial ovarian cancer, has a critical role in immune evasion. We showed in murine ovarian cancer models that depleting or inhibiting tumoral NAC1 reduced the recruitment and immunosuppressive function of myeloid-derived suppressor cells (MDSC) in the tumor microenvironment, led to significant increases of cytotoxic tumor-infiltrating CD8+ T cells, and promoted antitumor immunity and suppressed tumor progression. We further showed that tumoral NAC1 directly enhanced the transcription of CXCL16 by binding to CXCR6, thereby promoting MDSC recruitment to the tumor. Moreover, lipid C20:1T produced by NAC1-expressing tumor cells fueled oxidative metabolism of MDSCs and promoted their immune-suppressive function. We also showed that NIC3, a small-molecule inhibitor of NAC1, was able to sensitize mice bearing NAC1-expressing ovarian tumors to anti-PD-1 therapy. Our study reveals a critical role for NAC1 in controlling tumor infiltration of MDSCs and in modulating the efficacy of immune checkpoint blockade therapy. Thus, targeting of NAC1 may be exploited to sensitize ovarian cancer to immunotherapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"286-302"},"PeriodicalIF":8.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflammatory Stress Determines the Need for Chemotherapy in Patients with HER2-Positive Esophagogastric Adenocarcinoma Receiving Targeted Therapy and Immunotherapy. 炎症压力决定了接受靶向和免疫疗法的 HER2 阳性食管胃腺癌患者是否需要化疗。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-03 DOI: 10.1158/2326-6066.CIR-24-0561
Joseph Tintelnot, Lisa Paschold, Eray Goekkurt, Christoph Schultheiss, Urte Matschl, Mariana Santos Cruz, Marcus Bauer, Claudia Wickenhauser, Peter Thuss-Patience, Sylvie Lorenzen, Thomas J Ettrich, Jorge Riera-Knorrenschild, Lutz Jacobasch, Albrecht Kretzschmar, Stefan Kubicka, Salah-Eddin Al-Batran, Anke Reinacher-Schick, Daniel Pink, Carsten Bokemeyer, Marianne Sinn, Udo Lindig, Axel Hinke, Susanna Hegewisch-Becker, Alexander Stein, Mascha Binder

Anti-PD-1, trastuzumab, and chemotherapy are used in the treatment of patients with advanced HER2-positive esophagogastric adenocarcinoma, but long-term survival remains limited. In this study, we report extended follow-up data from the INTEGA trial (NCT03409848), which investigated the efficacy of the anti-PD-1 nivolumab, trastuzumab, and FOLFOX chemotherapy (FOLFOX arm) in comparison with a chemotherapy-free regimen involving nivolumab, trastuzumab, and the anti-CTLA-4 ipilimumab (Ipi arm) in the first-line setting for advanced disease. The 12-month overall survival (OS) showed no statistical difference between the arms, with 57% OS (95% confidence interval, 41%-71%) in the Ipi arm and 70% OS (95% confidence interval, 54%-82%) in the FOLFOX arm. Crossing of the survival curves indicated a potential long-term benefit for some patients within the Ipi arm, but early progressors in the Ipi arm underlined the need for biomarker-guided strategies to optimize treatment selection. To this end, metabolomic and cytokine analyses demonstrated elevated levels of normetanephrine, cortisol, and IL6 in immunotherapy-unresponsive patients in the Ipi arm, suggesting a role for systemic inflammatory stress in modulating antitumor immune responses. Patients with this signature also showed an increased neutrophil to lymphocyte ratio that persisted in the Ipi arm, but not in the FOLFOX arm, and strongly correlated with survival. Furthermore, a low neutrophil to lymphocyte ratio characterized patients benefiting from immunotherapy and targeted therapy without the need for additional chemotherapy. These data suggest that patient selection based on inflammatory stress-driven immune changes could help customize first-line treatment in patients with advanced HER2-positive esophagogastric adenocarcinoma to potentially improve long-term survival.

抗PD-1、曲妥珠单抗和化疗被用于晚期HER2阳性食管胃腺癌(EGA)患者的治疗,但长期生存率仍然有限。在此,我们报告了INTEGA试验(NCT03409848)的扩展随访数据,该试验研究了抗PD-1 nivolumab、曲妥珠单抗和FOLFOX化疗(FOLFOX组)与无化疗方案(包括nivolumab、曲妥珠单抗和抗CTLA-4 ipilimumab)(Ipi组)在晚期疾病一线治疗中的疗效比较。12个月的总生存率(OS)显示,两组之间没有统计学差异,Ipi组的OS为57%(95% CI:41%-71%),FOLFOX组的OS为70%(95% CI:54%-82%)。生存曲线的交叉表明,Ipi治疗组中的一些患者可能长期获益,但Ipi治疗组中的早期进展者强调了生物标志物指导策略优化治疗选择的必要性。为此,代谢组学和细胞因子分析表明,Ipi组免疫治疗无反应患者的去甲肾上腺素、皮质醇和白细胞介素6(IL-6)水平升高,这表明全身炎症应激在调节抗肿瘤免疫反应中的作用。具有这种特征的患者还表现出中性粒细胞与淋巴细胞比值(NLR)升高,这种现象在 Ipi 治疗组中持续存在,而在 FOLFOX 治疗组中则没有,并且与生存率密切相关。此外,低 NLR 是免疫疗法和靶向疗法受益患者的特征,无需额外化疗。这些数据表明,根据炎症应激驱动的免疫变化来选择患者,有助于定制晚期HER2阳性EGA患者的一线治疗方案,从而提高长期生存率。
{"title":"Inflammatory Stress Determines the Need for Chemotherapy in Patients with HER2-Positive Esophagogastric Adenocarcinoma Receiving Targeted Therapy and Immunotherapy.","authors":"Joseph Tintelnot, Lisa Paschold, Eray Goekkurt, Christoph Schultheiss, Urte Matschl, Mariana Santos Cruz, Marcus Bauer, Claudia Wickenhauser, Peter Thuss-Patience, Sylvie Lorenzen, Thomas J Ettrich, Jorge Riera-Knorrenschild, Lutz Jacobasch, Albrecht Kretzschmar, Stefan Kubicka, Salah-Eddin Al-Batran, Anke Reinacher-Schick, Daniel Pink, Carsten Bokemeyer, Marianne Sinn, Udo Lindig, Axel Hinke, Susanna Hegewisch-Becker, Alexander Stein, Mascha Binder","doi":"10.1158/2326-6066.CIR-24-0561","DOIUrl":"10.1158/2326-6066.CIR-24-0561","url":null,"abstract":"<p><p>Anti-PD-1, trastuzumab, and chemotherapy are used in the treatment of patients with advanced HER2-positive esophagogastric adenocarcinoma, but long-term survival remains limited. In this study, we report extended follow-up data from the INTEGA trial (NCT03409848), which investigated the efficacy of the anti-PD-1 nivolumab, trastuzumab, and FOLFOX chemotherapy (FOLFOX arm) in comparison with a chemotherapy-free regimen involving nivolumab, trastuzumab, and the anti-CTLA-4 ipilimumab (Ipi arm) in the first-line setting for advanced disease. The 12-month overall survival (OS) showed no statistical difference between the arms, with 57% OS (95% confidence interval, 41%-71%) in the Ipi arm and 70% OS (95% confidence interval, 54%-82%) in the FOLFOX arm. Crossing of the survival curves indicated a potential long-term benefit for some patients within the Ipi arm, but early progressors in the Ipi arm underlined the need for biomarker-guided strategies to optimize treatment selection. To this end, metabolomic and cytokine analyses demonstrated elevated levels of normetanephrine, cortisol, and IL6 in immunotherapy-unresponsive patients in the Ipi arm, suggesting a role for systemic inflammatory stress in modulating antitumor immune responses. Patients with this signature also showed an increased neutrophil to lymphocyte ratio that persisted in the Ipi arm, but not in the FOLFOX arm, and strongly correlated with survival. Furthermore, a low neutrophil to lymphocyte ratio characterized patients benefiting from immunotherapy and targeted therapy without the need for additional chemotherapy. These data suggest that patient selection based on inflammatory stress-driven immune changes could help customize first-line treatment in patients with advanced HER2-positive esophagogastric adenocarcinoma to potentially improve long-term survival.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"200-209"},"PeriodicalIF":8.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Sampling of Highlights from the Literature.
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-03 DOI: 10.1158/2326-6066.CIR-13-2-WWR
{"title":"A Sampling of Highlights from the Literature.","authors":"","doi":"10.1158/2326-6066.CIR-13-2-WWR","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-13-2-WWR","url":null,"abstract":"","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":"13 2","pages":"161"},"PeriodicalIF":8.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer immunology research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1