{"title":"Artificial Intelligence and IBD: Where are We Now and Where Will We Be in the Future?","authors":"Mehwish Ahmed, Molly L Stone, Ryan W Stidham","doi":"10.1007/s11894-024-00918-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Artificial intelligence (AI) is quickly demonstrating the ability to address problems and challenges in the care of IBD. This review with commentary will highlight today's advancements in AI applications for IBD in image analysis, understanding text, and replicating clinical knowledge and experience.</p><p><strong>Recent findings: </strong>Advancements in machine learning methods, availability of high-performance computing, and increasing digitization of medical data are providing opportunities for AI to assist in IBD care. Multiple groups have demonstrated the ability of AI to replicate expert endoscopic scoring in IBD, with expansion into automated capsule endoscopy, enterography, and histologic interpretations. Further, AI image analysis is being used to develop new endoscopic scoring with more granularity and detail than is possible using conventional methods. Advancements in natural language processing are proving to reduce laborious tasks required in the care of IBD, including documentation, information searches, and chart review. Finally, large language models and chatbots that can understand language and generate human-like replies are beginning to exhibit clinical intelligence that will revolutionize how we deliver IBD care. Today, AI is being deployed to replicate expert judgement in specific tasks where disagreement, subjectivity, and bias are common. However, the near future will herald contributions of AI doing what we cannot, including new detailed measures of IBD, enhanced analysis of images, and perhaps even fully automating care. As we speculate on future technologic capabilities that may improve how we care for IBD, this review will also consider how we will implement and fairly use AI in practice.</p>","PeriodicalId":10776,"journal":{"name":"Current Gastroenterology Reports","volume":" ","pages":"137-144"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320710/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Gastroenterology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11894-024-00918-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: Artificial intelligence (AI) is quickly demonstrating the ability to address problems and challenges in the care of IBD. This review with commentary will highlight today's advancements in AI applications for IBD in image analysis, understanding text, and replicating clinical knowledge and experience.
Recent findings: Advancements in machine learning methods, availability of high-performance computing, and increasing digitization of medical data are providing opportunities for AI to assist in IBD care. Multiple groups have demonstrated the ability of AI to replicate expert endoscopic scoring in IBD, with expansion into automated capsule endoscopy, enterography, and histologic interpretations. Further, AI image analysis is being used to develop new endoscopic scoring with more granularity and detail than is possible using conventional methods. Advancements in natural language processing are proving to reduce laborious tasks required in the care of IBD, including documentation, information searches, and chart review. Finally, large language models and chatbots that can understand language and generate human-like replies are beginning to exhibit clinical intelligence that will revolutionize how we deliver IBD care. Today, AI is being deployed to replicate expert judgement in specific tasks where disagreement, subjectivity, and bias are common. However, the near future will herald contributions of AI doing what we cannot, including new detailed measures of IBD, enhanced analysis of images, and perhaps even fully automating care. As we speculate on future technologic capabilities that may improve how we care for IBD, this review will also consider how we will implement and fairly use AI in practice.
期刊介绍:
As the field of gastroenterology and hepatology rapidly evolves, the wealth of published literature can be overwhelming. The aim of the journal is to help readers stay abreast of such advances by offering authoritative, systematic reviews by leading experts. We accomplish this aim by appointing Section Editors who invite international experts to contribute review articles that highlight recent developments and important papers published in the past year. Major topics in gastroenterology are covered, including pediatric gastroenterology, neuromuscular disorders, infections, nutrition, and inflammatory bowel disease. These reviews provide clear, insightful summaries of expert perspectives relevant to clinical practice. An Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research. We also provide commentaries from well-known figures in the field.