Levente Kollár, Katarina Grabrijan, Martina Hrast Rambaher, Krištof Bozovičar, Tímea Imre, György G Ferenczy, Stanislav Gobec, György M Keserű
{"title":"Boronic acid inhibitors of penicillin-binding protein 1b: serine and lysine labelling agents.","authors":"Levente Kollár, Katarina Grabrijan, Martina Hrast Rambaher, Krištof Bozovičar, Tímea Imre, György G Ferenczy, Stanislav Gobec, György M Keserű","doi":"10.1080/14756366.2024.2305833","DOIUrl":null,"url":null,"abstract":"<p><p>Penicillin-binding proteins (PBPs) contribute to bacterial cell wall biosynthesis and are targets of antibacterial agents. Here, we investigated PBP1b inhibition by boronic acid derivatives. Chemical starting points were identified by structure-based virtual screening and aliphatic boronic acids were selected for further investigations. Structure-activity relationship studies focusing on the branching of the boron-connecting carbon and quantum mechanical/molecular mechanical simulations showed that reaction barrier free energies are compatible with fast reversible covalent binding and small or missing reaction free energies limit the inhibitory activity of the investigated boronic acid derivatives. Therefore, covalent labelling of the lysine residue of the catalytic dyad was also investigated. Compounds with a carbonyl warhead and an appropriately positioned boronic acid moiety were shown to inhibit and covalently label PBP1b. Reversible covalent labelling of the catalytic lysine by imine formation and the stabilisation of the imine by dative N-B bond is a new strategy for PBP1b inhibition.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2024.2305833","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Penicillin-binding proteins (PBPs) contribute to bacterial cell wall biosynthesis and are targets of antibacterial agents. Here, we investigated PBP1b inhibition by boronic acid derivatives. Chemical starting points were identified by structure-based virtual screening and aliphatic boronic acids were selected for further investigations. Structure-activity relationship studies focusing on the branching of the boron-connecting carbon and quantum mechanical/molecular mechanical simulations showed that reaction barrier free energies are compatible with fast reversible covalent binding and small or missing reaction free energies limit the inhibitory activity of the investigated boronic acid derivatives. Therefore, covalent labelling of the lysine residue of the catalytic dyad was also investigated. Compounds with a carbonyl warhead and an appropriately positioned boronic acid moiety were shown to inhibit and covalently label PBP1b. Reversible covalent labelling of the catalytic lysine by imine formation and the stabilisation of the imine by dative N-B bond is a new strategy for PBP1b inhibition.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.