Michelle Surets, Albit Caban-Murillo, Steve Ramirez
{"title":"Prelimbic cortex ensembles promote appetitive learning-associated behavior.","authors":"Michelle Surets, Albit Caban-Murillo, Steve Ramirez","doi":"10.1101/lm.053892.123","DOIUrl":null,"url":null,"abstract":"<p><p>Memories of prior rewards bias our actions and future decisions. To determine the neural correlates of an appetitive associative learning task, we trained male mice to discriminate a reward-predicting cue over the course of 7 d. Encoding, recent recall, and remote recall were investigated to determine the areas of the brain recruited at each stage of learning. Using cFos as a proxy for neuronal activity, we found unique brain-wide patterns of activity across days that seem to correlate with distinct stages of learning. In particular, the prelimbic (PL) cortex was significantly recruited during the encoding of a novel association presentation, but its activity decreases as learning continues. To causally dissect the role of the PL in a reward memory across days, we chemogenetically inhibited first the PL entirely and then only tagged memory-bearing cells that were active during encoding in two stages of learning: early and late. Both nonspecific and specific PL inhibition experiments indicate that the PL drives behavior during late stages of learning to facilitate appropriate cue-driven behavior. Overall, our work underscores memory's role in discriminative reward seeking, and points to the PL as a target for modulating disorders in which impaired reward processing is a core component.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"31 1-2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903945/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.053892.123","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Memories of prior rewards bias our actions and future decisions. To determine the neural correlates of an appetitive associative learning task, we trained male mice to discriminate a reward-predicting cue over the course of 7 d. Encoding, recent recall, and remote recall were investigated to determine the areas of the brain recruited at each stage of learning. Using cFos as a proxy for neuronal activity, we found unique brain-wide patterns of activity across days that seem to correlate with distinct stages of learning. In particular, the prelimbic (PL) cortex was significantly recruited during the encoding of a novel association presentation, but its activity decreases as learning continues. To causally dissect the role of the PL in a reward memory across days, we chemogenetically inhibited first the PL entirely and then only tagged memory-bearing cells that were active during encoding in two stages of learning: early and late. Both nonspecific and specific PL inhibition experiments indicate that the PL drives behavior during late stages of learning to facilitate appropriate cue-driven behavior. Overall, our work underscores memory's role in discriminative reward seeking, and points to the PL as a target for modulating disorders in which impaired reward processing is a core component.
期刊介绍:
The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.